Conditional targeting of Ispd using paired Cas9 nickase and a single DNA template in mice.

FEBS Open Bio

Mouse Biology Program, University of California, Davis, 2795 2nd Street, Suite 400, Davis, CA 95618, USA.

Published: August 2014

CRISPR/Cas9 technology is a highly promising genome editing tool in the mouse, potentially overcoming the costs and time required for more traditional gene targeting methods in embryonic stem (ES) cells. Recently, compared to the wildtype nuclease, paired Cas9 nickase (Cas9n) combined with single guide RNA (sgRNA) molecules has been found to enhance the specificity of genome editing while reducing off-target effects. Paired Cas9n has been shown to be as efficient as Cas9 for generating insertion and deletion (indel) mutations by non-homologous end joining and targeted deletion in the genome. However, an efficient and reliable approach to the insertion of loxP sites flanking critical exon(s) to create a conditional allele of a target gene remains an elusive goal. In this study, we microinjected Cas9n RNA with sgRNAs together with a single DNA template encoding two loxP sites flanking (floxing) exon 2 of the isoprenoid synthase containing domain (Ispd) into the pronucleus and cytoplasm of C57BL/6NCr one-cell stage zygotes. After surgical transfer, one F0 mouse expressing a conditional allele was produced (at a frequency of ∼8% of live pups born). The floxed allele was transmitted through the germline to F1 progeny, and could be successfully recombined using Cre recombinase. This study indicates that conditional targeting can be accomplished effectively using paired Cas9n and a single DNA template.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4141200PMC
http://dx.doi.org/10.1016/j.fob.2014.06.007DOI Listing

Publication Analysis

Top Keywords

single dna
12
dna template
12
conditional targeting
8
paired cas9
8
cas9 nickase
8
genome editing
8
paired cas9n
8
loxp sites
8
sites flanking
8
conditional allele
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!