Sea lettuce (Ulva pertusa) is a nuisance species of green algae that is found all over the world. East-Asian species of the marine gastropod, the sea hare Aplysia kurodai, shows a clear feeding preference for sea lettuce. Compared with cellulose, sea lettuce contains a higher amount of starch as a storage polysaccharide. However, the entire amylolytic system in the digestive fluid of A. kurodai has not been studied in detail. We purified α-amylases and α-glucosidases from the digestive fluid of A. kurodai and investigated the synergistic action of these enzymes on sea lettuce. A. kurodai contain two α-amylases (59 and 80 kDa) and two α-glucosidases (74 and 86 kDa). The 59-kDa α-amylase, but not the 80-kDa α-amylase, was markedly activated by Ca(2+) or Cl(-). Both α-amylases degraded starch and maltoheptaose, producing maltotriose, maltose, and glucose. Glucose production from starch was higher with 80-kDa α-amylase than with 59-kDa α-amylase. Kinetic analysis indicated that 74-kDa α-glucosidase prefers short α-1,4-linked oligosaccharide, whereas 86-kDa α-glucosidase prefers large α-1,6 and α-1,4-linked polysaccharides such as glycogen. When sea lettuce was used as a substrate, a 2-fold greater amount of glucose was released by treatment with 59-kDa α-amylase and 74-kDa α-glucosidase than by treatment with 45-kDa cellulase and 210-kDa β-glucosidase of A. kurodai. Unlike mammals, sea hares efficiently digest sea lettuce to glucose by a combination of two α-amylases and two α-glucosidases in the digestive fluids without membrane-bound maltase-glucoamylase and sucrase-isomaltase complexes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4141080 | PMC |
http://dx.doi.org/10.1016/j.fob.2014.06.002 | DOI Listing |
Water Res
March 2025
Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao, 266003, PR China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China. Electronic address:
Macroalgal blooms have frequently occurred in coastal waters, and a large amount of algogenic dissolved organic matter (DOM) is input into seawater as macroalgae degraded. It undergoes continuous changes under microbial degradation; however, the impact of microbially-modified marine DOM on the environmental behaviour of organic pollutants remains underexplored. This study focused on Ulva prolifera, the dominant species in green tides, and investigated the molecular diversity of DOM from U.
View Article and Find Full Text PDFMikrochim Acta
March 2025
Trace Element, Spectroscopy and Speciation Group (GETEE), Instituto de Materiais (iMATUS), Faculty of Chemistry, University of Santiago de Compostela, Av. das Ciencias, s/n, 15782, Santiago de Compostela, Spain.
Bioavailability studies on pollution pre-concentrator organisms such as algae and mussels are necessary to ensure food safety, particularly in the case of nanomaterials whose industrial applications have increased in recent years. Thus, the bioaccessibility and the bioavailability of total Ag and Ti and AgNPs and TiONPs from raw and cooked seaweed (Palmaria palmata and Ulva sp.) and cooked mussels (Mytilus edulis) exposed to 1.
View Article and Find Full Text PDFAnticancer Agents Med Chem
March 2025
The Affiliated Clinical College of Xuzhou Medical University, Xuzhou, Jiangsu, 221009, China.
Background: Cervical cancer encompasses highly invasive and metastatic malignant tumors with poor prognoses. Recently, microneedles have gained significant attention as a novel, non-invasive drug delivery method, offering unique advantages in tumor treatment.
Objective: This study aims to develop an ulvan-based microneedle delivery system encapsulating the photosensitizer 5-aminolevulinic acid (5-ALA-UMNs) and to investigate its inhibitory effects on the growth of human cervical cancer Hela cells.
J Environ Sci (China)
August 2025
College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao 266003, China; UMT-OUC Joint Center for Marine Studies, Qingdao 266003, China.
Ulva prolifera green tides are becoming a worldwide environmental problem, especially in the Yellow Sea, China. However, the effects of the occurrence of U. prolifera green tides on the community organization and stability of surrounding microbiomes have still not been determined.
View Article and Find Full Text PDFMar Pollut Bull
March 2025
Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China. Electronic address:
Since 2007, the Yellow Sea green tide has become a recurring ecological phenomenon with a profound impact on coastal landscapes and marine ecosystems. Floating Ulva prolifera, the primary species driving the Yellow Sea green tide, exhibits morphologically indistinguishable sporophyte and gametophyte stages. This study is the first to systematically explore the growth and reproductive characteristics of U.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!