Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Internet health forums are a rich textual resource with content generated through free exchanges among patients and, in certain cases, health professionals. We tackle the problem of retrieving clinically relevant information from such forums, with relevant topics being defined from clinical auto-questionnaires. Texts in forums are largely unstructured and noisy, calling for adapted preprocessing and query methods. We minimize the number of false negatives in queries by using a synonym tool to achieve query expansion of initial topic keywords. To avoid false positives, we propose a new measure based on a statistical comparison of frequent co-occurrences in a large reference corpus (Web) to keep only relevant expansions. Our work is motivated by a study of breast cancer patients' health-related quality of life (QoL). We consider topics defined from a breast-cancer specific QoL-questionnaire. We quantify and structure occurrences in posts of a specialized French forum and outline important future developments.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!