Background: A subset of patients with atopic dermatitis (AD) is prone to disseminated herpes simplex virus (HSV) infection (ie, atopic dermatitis with a history of eczema herpeticum [ADEH+]). Biomarkers that identify ADEH+ are lacking.
Objective: We sought to search for novel ADEH+ gene signatures in PBMCs.
Methods: An RNA-sequencing approach was applied to evaluate global transcriptional changes by using PBMCs from patients with ADEH+ and patients with atopic dermatitis without a history of eczema herpeticum (ADEH-). Candidate genes were confirmed by means of quantitative PCR or ELISA.
Results: PBMCs from patients with ADEH+ had distinct changes to the transcriptome when compared with those from patients with ADEH- after HSV-1 stimulation: 792 genes were differentially expressed at a false discovery rate of less than 0.05 (ANOVA), and 15 type I and type III interferon genes were among the top 20 most downregulated genes in patients with ADEH+. We further validated that IFN-α and IL-29 mRNA and protein levels were significantly decreased in HSV-1-stimulated PBMCs from patients with ADEH+ compared with those from patients with ADEH- and healthy subjects. Ingenuity Pathway Analysis demonstrated that the upstream regulators of type I and type III interferons, interferon regulatory factor (IRF) 3 and IRF7, were significantly inhibited in patients with ADEH+ based on the downregulation of their target genes. Furthermore, we found that gene expression of IRF3 and IRF7 was significantly decreased in HSV-1-stimulated PBMCs from patients with ADEH+.
Conclusions: PBMCs from patients with ADEH+ have a distinct immune response after HSV-1 exposure compared with those from patients with ADEH-. Inhibition of the IRF3 and IRF7 innate immune pathways in patients with ADEH+ might be an important mechanism for increased susceptibility to disseminated viral infection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4186924 | PMC |
http://dx.doi.org/10.1016/j.jaci.2014.07.018 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!