Plant sesquiterpenes, such as (+)-valencene, artemisinin, and farnesene are valuable chemicals for use as aromatics, pharmaceuticals, and biofuels. Plant-based production systems for terpenoids critically depend on the availability of farnesyl diphosphate (FPP). Currently, these systems show insufficient yields, due to the competition for FPP of newly introduced pathways with endogenous ones. In this study, for the first time an RNAi strategy aiming at silencing of endogenous pathways for increased (+)-valencene production was employed. Firstly, a transient production system for (+)-valencene in Nicotiana benthamiana was set up using agroinfiltration. Secondly, silencing of the endogenous 5-epi-aristolochene synthase (EAS) and squalene synthase (SQS) that compete for the FPP pool was deployed. This resulted in a N. benthamiana plant that produces (+)-valencene as a prevalent volatile with a 2.8-fold increased yield. Finally, the size of the FPP pool was increased by overexpression of enzymes that are rate-limiting in FPP biosynthesis. Combined with silencing of EAS and SQS, no further increase of (+)-valencene production was observed, but emission of farnesol. Formation of farnesol, which is a breakdown product of FPP, indicates that overproducing sesquiterpenes is no longer limited by FPP availability in the cytosol. This study shows that metabolic engineering of plants can effectively be used for increased production of desired products in plants.

Download full-text PDF

Source
http://dx.doi.org/10.1002/biot.201400288DOI Listing

Publication Analysis

Top Keywords

+-valencene production
12
nicotiana benthamiana
8
silencing endogenous
8
fpp pool
8
fpp
7
+-valencene
6
increased
5
production
5
production nicotiana
4
benthamiana increased
4

Similar Publications

Background: Sesquiterpene ( +)-valencene is a characteristic aroma component from sweet orange fruit, which has a variety of biological activities and is widely used in industrial manufacturing of food, beverage and cosmetics industries. However, at present, the content in plant sources is low, and its yield and quality would be influenced by weather and land, which limit the supply of ( +)-valencene. The rapid development of synthetic biology has accelerated the construction of microbial cell factories and provided an effective alternative method for the production of natural products.

View Article and Find Full Text PDF

Triune Engineering Approach for (+)-valencene Overproduction in Yarrowia lipolytica.

Biotechnol J

January 2025

Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.

The sesquiterpene (+)-valencene, with its flavor and diverse biological functions, holds promise for applications in the food, fragrance, and pharmaceutical industries. However, the low concentration in nature and high cost of extraction limit its application. This study aimed to construct a microbial cell factory to efficiently produce (+)-valencene.

View Article and Find Full Text PDF

Background: Pseudomonas putida KT2440, a non-pathogenic soil bacterium, is a key platform strain in synthetic biology and industrial applications due to its robustness and metabolic versatility. Various systems have been developed for genome editing in P. putida, including transposon modules, integrative plasmids, recombineering systems, and CRISPR/Cas systems.

View Article and Find Full Text PDF

This study explores the complementary or synergistic effects of medicinal cannabis constituents, particularly terpenes, concerning their therapeutic potential, known as the entourage effect. A systematic review of the literature on cannabis "entourage effects" was conducted using the PRISMA model. Two research questions directed the review: (1) What are the physiological effects of terpenes and terpenoids found in cannabis? (2) What are the proven "entourage effects" of terpenes in cannabis? The initial approach involved an exploratory search in electronic databases using predefined keywords and Boolean phrases across PubMed/MEDLINE, Web of Science, and EBSCO databases using Medical Subject Headings (MeSH).

View Article and Find Full Text PDF
Article Synopsis
  • Plasmids are crucial tools for engineering microbial cell factories, especially when used in pairs, but their interactions with each other and with host cells were not well-understood until this study.
  • This research showed that using both an expression plasmid (pEV) and an assistant plasmid (pI) significantly enhanced cell growth and the production of valencene, highlighting the positive effects of dual-plasmid systems.
  • Findings revealed that specific gene expressions on pEV were boosted by pI and that the order of introducing the plasmids influenced the outcomes, suggesting that pI plays a dominant role in these interactions and offering new insights for improving microbial engineering.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!