Neospora caninum has been detected only sporadically in cases of ovine abortion, and it has therefore traditionally been considered as an unimportant parasite in small ruminants. This study was carried out with the aim of identifying the pathogen causing serious reproductive problems on a commercial sheep farm. Sera from all rams and ewes tested negative for antibodies against Border disease virus, Schmallenberg virus and Coxiella burnetii, and infections by these agents were therefore ruled out. Nevertheless, seropositivity to N. caninum and/or Toxoplasma gondii was detected, although the seroprevalence was higher in the case of N. caninum. The percentage of lambings and the number of lambs per dam were significantly lower in ewes that were seropositive to N. caninum while no effect on these parameters was detected in ewes that were seropositive to T. gondii. There was also no evidence of infection by T. gondii in the foetal/lamb tissues analyzed by PCR and/or immunohistopathological techniques. On the contrary, the DNA of N. caninum was detected in 13 out of 14 foetuses/lambs descendant from dams seropositive to this parasite. Characteristic lesions caused by N. caninum and/or its antigen were also detected. Genotyping of the N. caninum DNA revealed only two closely related microsatellite multilocus genotypes. The results clearly demonstrate that infection by N. caninum was the cause of the low reproductive performance of this sheep flock.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4153895PMC
http://dx.doi.org/10.1186/s13567-014-0088-5DOI Listing

Publication Analysis

Top Keywords

neospora caninum
8
sheep flock
8
caninum
8
caninum detected
8
caninum and/or
8
ewes seropositive
8
detected
5
caninum infection
4
infection reproductive
4
reproductive failure
4

Similar Publications

Impact of environmental factors on Neospora caninum and Toxoplasma gondii infection in breeding ewes from western Mexico.

Int J Biometeorol

January 2025

Laboratorio de Zoología, Departamento de Biotecnológicas y Ambientales, Universidad Autónoma de Guadalajara, Av. Patria 1201, Zapopan, 45129, México.

In Mexico, Neospora caninum and Toxoplasma gondii are major causes of reproductive problems in sheep. Understanding the environmental factors that influence the spread of these parasites is crucial for developing effective control strategies. The objective of this study was to identify the environmental factors associated with N.

View Article and Find Full Text PDF

Knowledge of pathogen epidemiological dynamics and habitat ecological features is essential for wildlife population and health monitoring and management. Toxoplasma gondii and Neospora caninum are two broadly distributed multi-host parasites that affect both wild and domestic animals and, in the case of T. gondii, cause zoonosis.

View Article and Find Full Text PDF

Background: Neospora caninum (Apicomplexa, Sarcocystidae) is a protozoan parasite regarded as a major cause of reproductive failure in cattle. Swine are susceptible to N. caninum infection; however, the role of these animals in the circulation, maintenance, and transmission of N.

View Article and Find Full Text PDF

Purpose: The aim of the present study was to establish a SYBR Green-based real-time PCR assay for detection of the Nc5 segment from the Neospora caninum genome.

Methods: The oligonucleotides sequences targeting the Nc5 gene previously reported and designed in-house were validated. Two Primer sets were evaluated and tested in four different combinations.

View Article and Find Full Text PDF

Background: The reproductive problem is an animal health-related bottleneck that constrains livestock genetic improvement efforts in tropical countries such as Ethiopia. The infectious causes of reproductive disorders are one cause of decreased reproductive efficiency. This study aimed to determine the seroprevalence to Bovine Herpesvirus-1 (BHV1), Bovine Viral Diarrhea Virus (BVDV), Neospora caninum (N.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!