Singleton-Merten syndrome (SMS) is a rare disease with a phenotype of dental dysplasia. Currently, the underlying mechanism of this disease is unknown. In order to investigate the functional mechanism of the SMS tooth phenotypes, we isolated dental pulp tissue and established SMS primary pulp cells. These cells exhibited normal morphology and could be maintained in culture. Their ability to express alkaline phosphatase and mineralize was confirmed by in vitro staining. A comparative osteogenesis polymerase chain reaction array analysis was performed revealing 22 genes up-regulated and 8 genes down-regulated greater than 2-fold in SMS versus unaffected pulp cells. Down-regulated genes included ALP, IGF2, TGFBR2 and COL1A1. Collagen type I was reduced in SMS cells as shown by Western blot analysis. Furthermore, matrix metallopeptidase 13 was found to be dramatically increased in SMS pulp cells. Our findings suggest that dentin mineralization is dysregulated in SMS and may contribute to the root phenotype found in this disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/03008207.2014.923880 | DOI Listing |
Int J Mol Sci
January 2025
Cell Engineering Laboratory, La Paz University Hospital Health Research Institute, IdiPAZ, 28046 Madrid, Spain.
The World Health Organization estimates that approximately 285 million people suffer from visual impairments, around 5% of which are caused by corneal pathologies. Currently, the most common clinical treatment consists of a corneal transplant (keratoplasty) from a human donor. However, worldwide demand for donor corneas amply exceeds the available supply.
View Article and Find Full Text PDFMicroorganisms
January 2025
Laboratory of Microbial Enzymology, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Prosp. Nauki 5, 142290 Pushchino, Russia.
Phenolic compounds are an extensive group of natural and anthropogenic organic substances of the aromatic series containing one or more hydroxyl groups. The main sources of phenols entering the environment are waste from metallurgy and coke plants, enterprises of the leather, furniture, and pulp and paper industries, as well as wastewater from the production of phenol-formaldehyde resins, adhesives, plastics, and pesticides. Among this group of compounds, phenol is the most common environmental pollutant.
View Article and Find Full Text PDFFoods
January 2025
Network of Chemistry and Technology/Associated Laboratory for Green Chemistry (REQUIMTE/LAQV), Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
Coffee pulp, a by-product of wet coffee processing, shows significant potential in the food and health domains, but its real applications remain underexplored. This work investigated the chemical composition and bioactive properties of coffee pulp from São Miguel Island (Azores, Portugal). The studied coffee pulp exhibited high fiber content (52% dw), mostly insoluble; notable mineral levels (10.
View Article and Find Full Text PDFDent J (Basel)
January 2025
Department of Conservative Dentistry with Endodontics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-902 Bytom, Poland.
Traditional root canal therapy (RCT) effectively removes diseased or necrotic pulp tissue and replaces it with inorganic materials. Regenerative endodontics is an alternative to conventional RCT by using biologically based approaches to restore the pulp-dentin complex. This review explores emerging techniques, including autogenic and allogenic pulp transplantation, platelet-rich fibrin, human amniotic membrane scaffolds, specialized pro-resolving mediators, nanofibrous and bioceramic scaffolds, injectable hydrogels, dentin matrix proteins, and cell-homing strategies.
View Article and Find Full Text PDFBioengineering (Basel)
December 2024
Department of Biomaterials and Regenerative Dental Medicine, University Maryland School of Dentistry, Baltimore, MD 21201, USA.
Traditional pulp-capping materials like mineral trioxide aggregate (MTA) offer excellent biocompatibility and sealing, but limitations such as prolonged setting time, low bioactivity, and high costs persist. Metformin, with its potential in craniofacial regeneration, could enhance dentin synthesis by targeting pulp cells. This study aimed to: (1) develop a calcium phosphate cement with chitosan (CPCC) with improved physio-mechanical properties; (2) incorporate metformin (CPCC-Met) to assess release; and (3) evaluate human dental pulp stem cells (hDPSCs) response.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!