Multifunctional nanoparticles with combined diagnostic and therapeutic functions show great promise towards personalized nanomedicine. However, attaining consistently high performance of these functions in vivo in one single nanoconstruct remains extremely challenging. Here we demonstrate the use of one single polymer to develop a smart 'all-in-one' nanoporphyrin platform that conveniently integrates a broad range of clinically relevant functions. Nanoporphyrins can be used as amplifiable multimodality nanoprobes for near-infrared fluorescence imaging (NIRFI), magnetic resonance imaging (MRI), positron emission tomography (PET) and dual modal PET-MRI. Nanoporphyrins greatly increase the imaging sensitivity for tumour detection through background suppression in blood, as well as preferential accumulation and signal amplification in tumours. Nanoporphyrins also function as multiphase nanotransducers that can efficiently convert light to heat inside tumours for photothermal therapy (PTT), and light to singlet oxygen for photodynamic therapy (PDT). Furthermore, nanoporphyrins act as programmable releasing nanocarriers for targeted delivery of drugs or therapeutic radio-metals into tumours.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4145614 | PMC |
http://dx.doi.org/10.1038/ncomms5712 | DOI Listing |
Introduction: This scoping review examines the application and evolution of the Social-Ecological Model for Adolescent and Young Adult Readiness for Transition (SMART). SMART provides a framework for assessing transition readiness across pediatric chronic conditions. Evaluating its research and clinical applications identifies insights and gaps across conditions and stakeholders.
View Article and Find Full Text PDFFoods
December 2024
College of Agriculture, Northwest A & F University, Xianyang 712100, China.
Buckwheat ( Moench) originates from Central Asia and is widely distributed around the world. It is recognized as a versatile food crop due to its nutritional richness. Conducting a systematic analysis of the literature on buckwheat research can help scientific researchers achieve a better understanding of the current state, hotspots, and trends in this field, thereby promoting the sustainable development of buckwheat.
View Article and Find Full Text PDFLab Chip
January 2025
Key Laboratory of Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China.
The utilization of acoustic fields offers a contactless approach for microparticle manipulation in a miniaturized system, and plays a significant role in medicine, biology, chemistry, and engineering. Due to the acoustic radiation force arising from the scattering of the acoustic waves, small particles in the Rayleigh scattering range can be trapped, whilst their impact on the acoustic field is negligible. Manipulating larger particles in the Mie scattering regime is challenging due to the diverse scattering modes, which impacts the local acoustic field.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L8, Canada.
The predominant adverse health effects in care delivery result from hospital-acquired (nosocomial) infections, which impose a substantial financial burden on global healthcare systems. Integrating contact-killing antibacterial action, gas permeability, and antioxidant properties into textile coatings offers a transformative solution, significantly enhancing both medical and everyday protective applications. This study presents an innovative, pollution-free physical compounding method for creating a fluorescent biopolymer composite embedded with silicene-based heteroatom-doped carbon quantum dots for the production of functional textiles.
View Article and Find Full Text PDFSmall
January 2025
Smart 3D Printing Research Team, Korea Electrotechnology Research Institute (KERI), Changwon-si, Gyeongsangnam-do, 51543, Republic of Korea.
Since their discovery, titanium-based MXenes (TiCT) have attracted significant attention. Several studies have presented versatile, cost-effective, and scalable approaches for fabricating TiCT-based functional components. However, most previous studies only allowed the realization of 2D patterns or required diverse additives to produce 3D architectures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!