Mitochondrial frataxin functions in iron homeostasis, biogenesis of iron-sulfur clusters, protection from oxidative stress and apoptosis, and as a tumor suppressor protein. We examined regulation of the expression of the human frataxin by p53. Pifithrin-α, an inhibitor of p53 function, and knockdown of p53 decreased the level of frataxin mRNA in human kidney HEK 293T cells. The transcriptional activity of the human frataxin gene is enhanced by the proximal promoter containing the p53-responsive element (p53RE) on the gene. Chromatin immunoprecipitation assay and electrophoretic mobility shift assay confirmed the binding of p53 to the human frataxin p53RE. The expression of wild-type p53 in human cancer HeLa cells increased the reporter activity carrying p53RE at the region of -209 to -200bp of the frataxin promoter. Finally, when the HeLa cells overexpressing frataxin were treated with 5-aminolevulinic acid (ALA), there was less accumulation of protoporphyrin than HeLa control cells, and it was sharply decreased by the addition of iron citrate, suggesting that the utilization of mitochondrial iron for heme biosynthesis can be dependent on the level of frataxin. Alternatively, the low expression of frataxin not regulated by p53 in tumor cells lowers the utilization of iron in mitochondria, causing the tumor-specific ALA-induced accumulation of protoporphyrin.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.gene.2014.08.043DOI Listing

Publication Analysis

Top Keywords

human frataxin
16
frataxin
10
frataxin gene
8
tumor cells
8
utilization mitochondrial
8
mitochondrial iron
8
level frataxin
8
p53 human
8
hela cells
8
accumulation protoporphyrin
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!