Progesterone withdrawal is essential for parturition, but the mechanism of this pivotal hormonal change is unclear in women and other mammals that give birth without a pre-labor drop in maternal progesterone levels. One possibility suggested by uterine tissue analyses and cell culture models is that progesterone receptor levels change at term decreasing the progesterone responsiveness of the myometrium, which causes progesterone withdrawal at the functional level and results in estrogen dominance enhancing uterine contractility. In this investigation we have explored whether receptor mediated functional progesterone withdrawal occurs during late pregnancy and labor in vivo. We have also determined whether prostaglandins that induce labor cause functional progesterone withdrawal by altering myometrial progesterone receptor expression. Pregnant guinea pigs were used, since this animal loses progesterone responsiveness at term and gives birth in the presence of high maternal progesterone level similarly to primates. We found that progesterone receptor mRNA and protein A and B expression decreased in the guinea pig uterus during the last third of gestation and in labor. Prostaglandin administration reduced while prostaglandin synthesis inhibitor treatment increased progesterone receptor A protein abundance. Estrogen receptor-1 protein levels remained unchanged during late gestation, in labor and after prostaglandin or prostaglandin synthesis inhibitor administration. Steroid receptor levels were higher in the non-pregnant than in the pregnant uterine horns. We conclude that the decreasing expression of both progesterone receptors A and B is a physiological mechanism of functional progesterone withdrawal in the guinea pig during late pregnancy and in labor. Further, prostaglandins administered exogenously or produced endogenously stimulate labor in part by suppressing uterine progesterone receptor A expression, which may cause functional progesterone withdrawal, promote estrogen dominance and foster myometrial contractions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4144885 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0105253 | PLOS |
Eur J Appl Physiol
December 2024
LFE Research Group, Department of Health and Human Performance. Faculty of Physical Activity and Sport Sciences, Universidad Politécnica de Madrid, Calle de Martín Fierro, 7, 28040, Madrid, Spain.
Purpose: To investigate the acute effects of eccentric-based resistance exercise and sex-hormone fluctuations on P1NP and β-CTX-1 concentrations in premenopausal females.
Methods: Nine eumenorrheic females and ten oral contraceptive (OC) users performed eccentric-based resistance exercise, consisted of 10 × 10 repetitions of parallel back squats with a 4-s eccentric phase, in the early-follicular (EFP), late-follicular (LFP) and mid-luteal (MLP) phases of the menstrual cycle (MC) or in the withdrawal (WP) and active pill-taking (APP) phases of the OC cycle.
Results: 17β-oestradiol (pg·ml) was lower in EFP (36.
Int J Gynaecol Obstet
December 2024
Department of Obstetrics and Gynecology and CE-RICSAL (CEntro di RIcerca Clinico SALentino), "Veris Delli Ponti" Hospital, Lecce, Italy.
J Dairy Sci
January 2025
Department of Animal Science, University of São Paulo, Piracicaba, SP, Brazil, 13418-900. Electronic address:
The study evaluated strategies for induction of ovulation at the end of timed AI (TAI) protocols initiated after a novel presynchronization strategy. A total of 909 lactating dairy cows from 6 dairy herds initiated a presynchronization protocol on d -15 with an intravaginal progesterone (P4) implant and 7 d later (d -8) were treated with 1.0 mg of estradiol cypionate (EC) and 0.
View Article and Find Full Text PDFTheriogenology
March 2025
Universidade Estadual Paulista "Julio de Mesquita Filho", Botucatu, SP, 18618-000, Brazil. Electronic address:
The aims of this study were to: 1) evaluate the impact of intravaginal progesterone (P4) inserts containing different amounts of P4 on pregnancy rates of predominantly Bos taurus beef cows exposed to fixed-time artificial insemination (FTAI) using estradiol and P4-based synchronization protocols, and 2) evaluate the impact of delayed luteolysis on the fertility of cows receiving P4 insert with less P4. Cows (n = 1744) were randomly assigned to 1 of 3 treatments: 1) 2.0 mg of estradiol benzoate together with an intravaginal P4-releasing insert containing 1.
View Article and Find Full Text PDFNeuroendocrinology
November 2024
Department of Psychology, University at Albany, State University New York, Albany, New York, USA.
Introduction: Corticotropin-releasing factor receptor 1 (CRFR1) is a key regulator of neuroendocrine and behavioral stress responses. Previous studies have demonstrated that CRFR1 in certain hypothalamic and preoptic brain areas is modified by chronic stress and during the postpartum period in female mice, although the potential hormonal contributors to these changes are unknown.
Methods: This study focused on determining the contributions of hormones associated with stress and the maternal period (glucocorticoids, prolactin, estradiol/progesterone) on CRFR1 levels using a CRFR1-GFP reporter mouse line and immunohistochemistry.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!