The structurally related exocyclic guanine adducts α-hydroxypropano-dG (α-OH-PdG), γ-hydroxypropano-dG (γ-OH-PdG), and M1dG are formed when DNA is exposed to the reactive aldehydes acrolein and malondialdehyde (MDA). These lesions are believed to form the basis for the observed cytotoxicity and mutagenicity of acrolein and MDA. In an effort to understand the enzymatic pathways and chemical mechanisms that are involved in the repair of acrolein- and MDA-induced DNA damage, we investigated the ability of the DNA repair enzyme AlkB, an α-ketoglutarate/Fe(II) dependent dioxygenase, to process α-OH-PdG, γ-OH-PdG, and M1dG in both single- and double-stranded DNA contexts. By monitoring the repair reactions using quadrupole time-of-flight (Q-TOF) mass spectrometry, it was established that AlkB can oxidatively dealkylate γ-OH-PdG most efficiently, followed by M1dG and α-OH-PdG. The AlkB repair mechanism involved multiple intermediates and complex, overlapping repair pathways. For example, the three exocyclic guanine adducts were shown to be in equilibrium with open-ring aldehydic forms, which were trapped using (pentafluorobenzyl)hydroxylamine (PFBHA) or NaBH4. AlkB repaired the trapped open-ring form of γ-OH-PdG but not the trapped open-ring of α-OH-PdG. Taken together, this study provides a detailed mechanism by which three-carbon bridge exocyclic guanine adducts can be processed by AlkB and suggests an important role for the AlkB family of dioxygenases in protecting against the deleterious biological consequences of acrolein and MDA.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4164229 | PMC |
http://dx.doi.org/10.1021/tx5002817 | DOI Listing |
Carbohydr Res
March 2024
Faculty of Chemistry, Department of Organic Chemistry, University of Gdańsk, Wita Stwosza 63, PL-80-308, Gdańsk, Poland. Electronic address:
In this paper, detailed and systematic gas-phase B3LYP conformational studies of four monomers of threose nucleic acid (TNA) with guanine attached at the C1' atom and bearing different substituents (OH, OP(=O)OH and OCH) in the C2' and C3' positions of the α-l-threofuranose moiety are presented. All exocyclic single-bond (χ, ε and γ) rotations, as well as the ν-ν endocyclic torsion angles, were taken into consideration. Three (threoguanosines TG1-TG3) or two (TG4) energy minima were found for the rotation about the χ torsion angle.
View Article and Find Full Text PDFJ Nucleic Acids
March 2023
School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan.
MGB polyamide-oligonucleotide conjugates - with linked MGB polyamides at the 2-exocyclic amino group of a guanine base using aminoalkyl linkers were synthesized and evaluated in terms of binding affinity for complementary DNA containing the MGB polyamide binding sequence using and CD analyses. The MGB polyamides comprised pyrrole polyamides (Py- and Py-), which possess binding affinity for A-T base pairs, and imidazole (Im-) and pyrrole--imidazole (Py--Im-) polyamide hairpin motifs, which possess binding affinity for C-G base pairs. It was found that the stability of modified dsDNA was greatly influenced by the linker length.
View Article and Find Full Text PDFBiochemistry
October 2021
Department of Chemistry and Biochemistry, Loyola University Chicago, 1068 W. Sheridan Road, Chicago, Illinois 60660, United States.
Guanosine triphosphate (GTP) cyclohydrolase II (RibA) is one of three enzymes that hydrolytically cleave the C8-N9 bond of the GTP guanine. RibA also catalyzes a subsequent hydrolytic attack at the base liberating formate and in addition cleaves the α-β phosphodiester bond of the triphosphate to form pyrophosphate (PPi). These hydrolytic reactions are promoted by tandem active-site metal ions, zinc and magnesium, that respectively function at the GTP guanine and triphosphate moieties.
View Article and Find Full Text PDFNucleic Acids Res
May 2021
Department of Biochemistry and Center for Structural Biology, Vanderbilt University, School of Medicine, Nashville, TN 37232, USA.
Even in high-quality X-ray crystal structures of oligonucleotides determined at a resolution of 1 Å or higher, the orientations of first-shell water molecules remain unclear. We used cryo neutron crystallography to gain insight into the H-bonding patterns of water molecules around the left-handed Z-DNA duplex [d(CGCGCG)]2. The neutron density visualized at 1.
View Article and Find Full Text PDFChem Res Toxicol
April 2021
Department of Chemistry, University of Missouri, 125 Chemistry Building, Columbia, Missouri 65211, United States.
The formation of interstrand cross-links in duplex DNA is important in biology, medicine, and biotechnology. Interstrand cross-links arising from the reaction of the aldehyde residue of an abasic (apurinic or AP) site with the exocyclic amino groups of guanine or adenine residues on the opposing strand of duplex DNA have previously been characterized. The canonical nucleobase cytosine has an exocyclic amino group but its ability to form interstrand cross-links by reaction with an AP site has not been characterized before now.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!