Aims: Human atrial electrophysiology exhibits high inter-subject variability in both sinus rhythm (SR) and chronic atrial fibrillation (cAF) patients. Variability is however rarely investigated in experimental and theoretical electrophysiological studies, thus hampering the understanding of its underlying causes but also its implications in explaining differences in the response to disease and treatment. In our study, we aim at investigating the ability of populations of human atrial cell models to capture the inter-subject variability in action potential (AP) recorded in 363 patients both under SR and cAF conditions.

Methods And Results: Human AP recordings in atrial trabeculae (n = 469) from SR and cAF patients were used to calibrate populations of computational SR and cAF atrial AP models. Three populations of over 2000 sampled models were generated, based on three different human atrial AP models. Experimental calibration selected populations of AP models yielding AP with morphology and duration in range with experimental recordings. Populations using the three original models can mimic variability in experimental AP in both SR and cAF, with median conductance values in SR for most ionic currents deviating less than 30% from their original peak values. All cAF populations show similar variations in G(K1), G(Kur) and G(to), consistent with AF-related remodeling as reported in experiments. In all SR and cAF model populations, inter-subject variability in I(K1) and I(NaK) underlies variability in APD90, variability in I(Kur), I(CaL) and I(NaK) modulates variability in APD50 and combined variability in Ito and I(Kur) determines variability in APD20. The large variability in human atrial AP triangulation is mostly determined by I(K1) and either I(NaK) or I(NaCa) depending on the model.

Conclusion: Experimentally-calibrated human atrial AP models populations mimic AP variability in SR and cAF patient recordings, and identify potential ionic determinants of inter-subject variability in human atrial AP duration and morphology in SR versus cAF.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4144914PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0105897PLOS

Publication Analysis

Top Keywords

human atrial
28
inter-subject variability
20
variability
13
variability human
12
atrial models
12
atrial
11
caf
9
human
8
action potential
8
sinus rhythm
8

Similar Publications

Introduction: Complete radical resection is crucial for successfully treating thymic carcinomas. However, when the invasion of the great vessels or the heart in Masaoka III and IV stages occurs, the management poses more challenges. The R0 resection often requires neoadjuvant treatment.

View Article and Find Full Text PDF

Mini Atrial Septal Defect Closure In Dextrocardia With Situs Inversus By Left Anterolateral Thoracotomy(Lalt) Approach - A Surgical Challenge.

Port J Card Thorac Vasc Surg

January 2025

Department of Cardiovascular & Thoracic Surgery, U. N. Mehta Institute of Cardiology and Research Center, Civil Hospital Campus, Asarwa, Ahmedabad, Gujarat, India.

Background: ASD is a relatively rare subset among patients with situs inversus dextrocardia with concordant AV connection and a minimally invasive approach in dextrocardia has yet to be standardized. The present case describes a case surgical closure of ostium secundum ASD by left mini-thoracotomy approach in patient with dextrocardia and situs inversus.

Case Presentation: The present case describes a 44-year female patient of ostium secundum ASD in dextrocardia with situs inversus.

View Article and Find Full Text PDF

A Nomogram utilizing ECG P-wave parameters to predict recurrence risk following catheter ablation in paroxysmal atrial fibrillation.

J Cardiothorac Surg

January 2025

Department of Cardiology, Fujian Medical University Union Hospital, Fujian Heart Medical Center, Fujian Institute of Coronary Heart Disease, Fujian Clinical Medical Research Center for Heart and Macrovascular Disease, Fuzhou, 350001, China.

Objective: The objective of this study is to assess the predictive utility of perioperative P-wave parameters in patients with paroxysmal atrial fibrillation (PAF) undergoing catheter ablation, and to develop a predictive model using these parameters.

Methods: A total of 213 patients with PAF undergoing catheter ablation were retrospectively analyzed. P-wave parameters were measured within 3 days preoperatively and on the day postoperatively to determine their predictive significance for postoperative PAF recurrence.

View Article and Find Full Text PDF

Estimates and trends in death and disability from atrial fibrillation/atrial flutter due to high sodium intake, China, 1990 to 2019.

BMC Cardiovasc Disord

January 2025

Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences,Hangzhou Institute of Cardiovascular Diseases, Engineering Research Center of Mobile Health Management System & Ministry of Education, Hangzhou Normal University, Hangzhou, 310015, China.

Objective: The effect of sodium intake on atrial fibrillation (AF)/atrial flutter (AFL), with respect to sex and age, has yet to be elucidated. This study aims to compare long-term trends in AF/AFL death and disability due to high sodium intake in China from 1990 to 2019.

Methods: We utilized data from the Global Burden of Disease study to assess the mortality and disability burden of AF/AFL attributable to high sodium intake (> 5 g/d) in China from 1990 to 2019.

View Article and Find Full Text PDF

Background: Atrial fibrillation (AF) is the most prevalent arrhythmia encountered in clinical practice. Triglyceride glucose index (Tyg), a convenient evaluation variable for insulin resistance, has shown associations with adverse cardiovascular outcomes. However, studies on the Tyg index's predictive value for adverse prognosis in patients with AF without diabetes are lacking.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!