Ca2+ entry into airway epithelia is important for activation of the NFAT family of transcription factors and expression of genes including epidermal growth factor that help orchestrate local inflammatory responses. However, the identity of epithelial Ca2+ channel that activates these transcriptional responses is unclear. In many other non-excitable cells, store-operated Ca2+ entry is a major route for Ca2+ influx and is mediated by STIM1 and Orai1 proteins. This study was performed to determine if store-operated Ca2+ channels were expressed in human bronchial epithelial cells and, if so, whether they coupled Ca2+ entry to gene expression. Cytoplasmic Ca2+ measurements, patch clamp recordings, RNAi knockdown and functional assays were used to identify and then investigate the role of these Ca2+ channels in activating the NFAT and c-fos pathways and EGF expression. STIM1 and Orai1 mRNA transcripts as well as proteins were robustly in epithelial cells and formed functional Ca2+ channels. Ca2+ entry through the channels activated expression of c-fos and EGF as well as an NFAT-dependent reporter gene. Store-operated Ca2+ entry was also important for epithelial cell migration in a scrape wound assay. These findings indicate that store-operated Ca2+ channels play an important role in stimulating airway epithelial cell gene expression and therefore comprise a novel potential therapeutic target for the treatment of chronic asthma and related airway disorders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4144895PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0105586PLOS

Publication Analysis

Top Keywords

store-operated ca2+
20
ca2+ channels
20
ca2+ entry
20
ca2+
13
gene expression
12
epithelial cells
12
channels activating
8
bronchial epithelial
8
stim1 orai1
8
epithelial cell
8

Similar Publications

Background: Dystonia is a common neurological hyperkinetic movement disorder that can be caused by mutations in anoctamin 3 (ANO3, TMEM16C), a phospholipid scramblase and ion channel. We previously reported patients that were heterozygous for the ANO3 variants S651N, V561L, A599D and S651N, which cause dystonia by unknown mechanisms.

Methods: We applied electrophysiology, Ca measurements and cell biological methods to analyze the molecular mechanisms that lead to aberrant intracellular Ca signals and defective activation of K channels in patients heterozygous for the ANO3 variants.

View Article and Find Full Text PDF

Filamin A C-terminal fragment modulates Orai1 expression by inhibition of protein degradation.

Am J Physiol Cell Physiol

January 2025

Department of Physiology (Cellular Physiology Research Group),Institute of Molecular Pathology Biomarkers (IMPB), University of Extremadura, 10003-Caceres, Spain.

Filamin A (FLNA) is an actin-binding protein that has been reported to interact with STIM1 modulating the activation of Orai1 channels. Cleaving of FLNA by calpain leads to a C-terminal fragment that is involved in a variety of functional and pathological events, including pro-oncogenic activity in different types of cancer. Here we show that full-length FLNA is downregulated in samples from colon cancer patients as well as in the adenocarcinoma cell line HT-29.

View Article and Find Full Text PDF

Mucociliary clearance (MCC) is a host defense mechanism of the respiratory system. Beating cilia plays a crucial role in the MCC process and ciliary beat frequency (CBF) is activated by several factors including elevations of the intracellular cAMP concentration ([cAMP]), intracellular Ca concentration ([Ca]), and intracellular pH (pH). In this study, we investigated whether an artichoke-extracted component cynaropicrin could be a beneficial compound for improving MCC.

View Article and Find Full Text PDF

Sjögren's disease (SjD) is an autoimmune disorder characterized by progressive salivary and lacrimal gland dysfunction, inflammation, and destruction, as well as extraglandular manifestations. SjD is associated with autoreactive B and T cells, but its pathophysiology remains incompletely understood. Abnormalities in regulatory T (T) cells occur in several autoimmune diseases, but their role in SjD is ambiguous.

View Article and Find Full Text PDF

Store-Operated Ca Entry in Fibrosis and Tissue Remodeling.

Contact (Thousand Oaks)

December 2024

Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.

Fibrosis is a pathological condition characterized by excessive tissue deposition of extracellular matrix (ECM) components, leading to scarring and impaired function across multiple organ systems. This complex process is mediated by a dynamic interplay between cell types, including myofibroblasts, fibroblasts, immune cells, epithelial cells, and endothelial cells, each contributing distinctively through various signaling pathways. Critical to the regulatory mechanisms involved in fibrosis is store-operated calcium entry (SOCE), a calcium entry pathway into the cytosol active at the endoplasmic reticulum-plasma membrane contact sites and common to all cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!