Surface-modified poly(lactic-co-glycolic acid) (PLGA)/poly(β-aminoester)(PBAE)nanoparticles (NPs) have shown great promise in gene delivery. In this work, the pulmonary cellular uptake of these NPs is evaluated and surface-modified PLGA/PBAE NPs are shown to achieve higher cellular association and gene editing than traditional NPs composed of PLGA or PLGA/PBAE blends alone.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4339402PMC
http://dx.doi.org/10.1002/adhm.201400355DOI Listing

Publication Analysis

Top Keywords

polylactic-co-glycolic acid
8
cellular uptake
8
gene editing
8
modified polylactic-co-glycolic
4
acid nanoparticles
4
nanoparticles enhanced
4
enhanced cellular
4
uptake gene
4
editing lung
4
lung surface-modified
4

Similar Publications

Human cells, such as fibroblasts and particularly human mesenchymal stem cells (hMSCs), represent a promising and effective therapeutic tool for a range of cell-based therapies used to treat various diseases. The effective delivery of therapeutic cells remains a challenge due to limitations in targeting, invasiveness, and cell viability. To address these challenges, we developed a microneedle (MN) system for minimally invasive cell delivery with high cellular stability.

View Article and Find Full Text PDF

Chitooligosaccharide-modified PLGA-loaded PPD nanoparticles ameliorated sepsis-associated acute kidney injury the NF-κB signaling pathway.

Drug Dev Ind Pharm

December 2024

Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), School of Pharmacy, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, P. R. China.

Objectives: Sepsis-associated acute kidney injury (SA-AKI) is a significant clinical challenge with high morbidity and mortality. Low bioavailability of protopanaxadiol (PPD) limits its clinical application. In this study, PPD was encapsulated with chitooligosaccharide (COS) modified polylactic-co-glycolic acid (PLGA) to develop novel nanomedicines for the treatment of SA-AKI.

View Article and Find Full Text PDF

Preparation, Characterization, and Immune Activity of Viola philippica Polysaccharide PLGA Nanoparticles.

Chem Biodivers

November 2024

Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, P. R. China.

Recent pharmacological studies have demonstrated that Viola philippica polysaccharide (VPP) exhibits a modulating effect on immune activity. However, its utilization has been hampered by its large particle size and complex spatial structure. Polylactic-co-glycolic acid (PLGA) copolymer is recognized as an effective drug delivery carrier, exhibiting excellent biochemical properties.

View Article and Find Full Text PDF

Despite its potential against several carcinomas, the pharmacological efficacy of silibinin (SLB) is hampered by poor solubility, absorption, and oral bioavailability. To face these issues, we developed polylactic-co-glycolic acid (PLGA) nanoparticles (NPs) coated with hydrophilic polyethene oxide (PEO) for controlled and targeted SLB delivery. NPs were produced at two different SLB loadings and presented a spherical shape with smooth surfaces and stable size in water and cell culture medium.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!