Rationale: In recent years, methylated nucleosides have been considered to be potential biomarkers to human diseases. The early diagnosis of coronary artery disease (CAD) is an unsolved problem in clinical cardiology. The aim of our study is to evaluate whether urinary methylated nucleosides can serve as useful biomarkers for CAD.
Methods: A solid-phase extraction (SPE) column was used for extraction and purification of methylated nucleosides in urine, and high-performance liquid chromatography/electrospray ionization tandem mass spectrometry (HPLC/ESI-MS/MS) was employed for specific, sensitive and rapid determination of the urinary methylated nucleosides from patients with cardiac events.
Results: We have analyzed six methylated nucleosides (N(3)-methylcytidine, N(1)-methyladenosine, N(6)-methyladenosine, N(2)-methylguanosine, N(1)-methylguanosine and N(2),N(2)-dimethylguanosine) in urine from 51 patients with CAD and 25 non-CAD controls by HPLC/ESI-MS/MS using selective reaction monitoring (SRM). Our results have shown that there were significant differences in the N(6)-methyladenosine levels from the patients and the non-CAD controls in the urine analyzed.
Conclusions: The results have indicated that HPLC/ESI-MS/MS is a highly specific and sensitive tool to measure urinary methylated nucleosides for analysis of CAD. Our result has revealed that the evaluation of urinary methylated nucleosides might be helpful in the analysis of CAD by liquid chromatography/mass spectrometry. Therefore, this N(6)-methyladenosine is worthy of further studies in the near future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/rcm.6986 | DOI Listing |
Int J Mol Sci
December 2024
Interdisciplinary Centre for Preclinical and Clinical Research, College of Natural Sciences, University of Rzeszow, Werynia 2a, 36-100 Kolbuszowa, Poland.
Degenerative retinal diseases can lead to blindness if left untreated. At present, there are no curative therapies for retinal diseases. Therefore, effective treatment strategies for slowing the progression of retinal diseases and thus improving patients' life standards are urgently needed.
View Article and Find Full Text PDFGenes (Basel)
December 2024
Department of Bioinformatics, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany.
Epigenetic dysregulation is a common feature of cancer. Promoter demethylation of tumor-promoting genes and global DNA hypomethylation may trigger tumor progression. Epigenetic changes are unstable; thus, research has focused on detecting remedies that target epigenetic regulators.
View Article and Find Full Text PDFEpitranscriptomic modifications on RNA play critical roles in stability, processing, and function, partly by influencing interactions with RNA-binding proteins and receptors. The role of post-transcriptional RNA modifications on cell-free non-coding small RNA (sRNA) remains poorly understood in disease contexts. High-density lipoproteins (HDL), which transport sRNAs, can lose their beneficial properties in atherosclerosis cardiovascular disease (ASCVD).
View Article and Find Full Text PDFInflamm Res
January 2025
Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, No. 350 Longzihu Road, Xinzhan District, Hefei, 230012, Anhui, China.
Objective: Arthritis is a class of diseases, characterized by joint and surrounding inflammation, accompanied by joint swelling, pain, dysfunction. According to different factors, arthritis can be divided into osteoarthritis, rheumatoid arthritis, ankylosing spondylitis and so on. N6-methyladenosine (m6A) is the most common internal modification of eukaryotic mRNA and is involved in splicing, stabilization, output and degradation of RNA metabolism.
View Article and Find Full Text PDFHomozygous MTAP deletion occurs in ~15% of cancers, making them vulnerable to decreases in the concentration of S-adenosylmethionine (SAM). AG-270/S095033 is an oral, potent, reversible inhibitor of methionine adenosyltransferase 2 A (MAT2A), the enzyme primarily responsible for the synthesis of SAM. We report results from the first-in-human, phase 1 trial of AG-270/S095033 as monotherapy in patients with advanced malignancies (ClinicalTrials.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!