Prediction of dynamical drug sensitivity and resistance by module network rewiring-analysis based on transcriptional profiling.

Drug Resist Updat

Key Laboratory of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China; Institute of Industrial Science, University of Tokyo, Tokyo 153-8505, Japan. Electronic address:

Published: July 2014

Revealing functional reorganization or module rewiring between modules at network levels during drug treatment is important to systematically understand therapies and drug responses. The present article proposed a novel model of module network rewiring to characterize functional reorganization of a complex biological system, and described a new framework named as module network rewiring-analysis (MNR) for systematically studying dynamical drug sensitivity and resistance during drug treatment. MNR was used to investigate functional reorganization or rewiring on the module network, rather than molecular network or individual molecules. Our experiments on expression data of patients with Hepatitis C virus infection receiving Interferon therapy demonstrated that consistent module genes derived by MNR could be directly used to reveal new genotypes relevant to drug sensitivity, unlike the other differential analyses of gene expressions. Our results showed that functional connections and reconnections among consistent modules bridged by biological paths were necessary for achieving effective responses of a drug. The hierarchical structures of the temporal module network can be considered as spatio-temporal biomarkers to monitor the efficacy, efficiency, toxicity, and resistance of the therapy. Our study indicates that MNR is a useful tool to identify module biomarkers and further predict dynamical drug sensitivity and resistance, characterize complex dynamic processes for therapy response, and provide biologically systematic clues for pharmacogenomic applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.drup.2014.08.002DOI Listing

Publication Analysis

Top Keywords

module network
20
drug sensitivity
16
dynamical drug
12
sensitivity resistance
12
functional reorganization
12
drug
8
module
8
network rewiring-analysis
8
drug treatment
8
network
7

Similar Publications

Background: The morbidity and mortality of sepsis remain high, and so far specific diagnostic and therapeutic means are lacking.

Objective: To screen novel biomarkers for sepsis.

Methods: Raw sepsis data were downloaded from the Chinese National Genebank (CNGBdb) and screened for differentially expressed RNAs.

View Article and Find Full Text PDF

The evolutionary origin of the vertebrate brain remains a major subject of debate, as its development from a dorsal tubular neuroepithelium is unique to chordates. To shed light on the evolutionary emergence of the vertebrate brain, we compared anterior neuroectoderm development across deuterostome species, using available single-cell datasets from sea urchin, amphioxus, and zebrafish embryos. We identified a conserved gene co-expression module, comparable to the anterior gene regulatory network (aGRN) controlling apical organ development in ambulacrarians, and spatially mapped it by multiplexed in situ hybridization to the developing retina and hypothalamus of chordates.

View Article and Find Full Text PDF

Hypertension is a critical risk factor and cause of mortality in cardiovascular diseases, and it remains a global public health issue. Therefore, understanding its mechanisms is essential for treating and preventing hypertension. Gene expression data is an important source for obtaining hypertension biomarkers.

View Article and Find Full Text PDF

Maize quality detection based on MConv-SwinT high-precision model.

PLoS One

January 2025

Engineering Research Center of Hydrogen Energy Equipment& Safety Detection, Universities of Shaanxi Province, Xijing University, Xi'an, China.

The traditional method of corn quality detection relies heavily on the subjective judgment of inspectors and suffers from a high error rate. To address these issues, this study employs the Swin Transformer as an enhanced base model, integrating machine vision and deep learning techniques for corn quality assessment. Initially, images of high-quality, moldy, and broken corn were collected.

View Article and Find Full Text PDF

Leucine has gained recognition as an athletic dietary supplement in recent years due to its various benefits; however, the underlying molecular mechanisms remain unclear. In this study, 20 basketball players were recruited and randomly assigned to two groups. Baseline exercise performance-assessed through a 282-foot sprint, free throws, three-point field goals, and self-rated practice assessments-was measured prior to leucine supplementation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!