Drug resistance is a clinically relevant problem in the treatment of acute myeloid leukaemia (AML). We have previously reported a relationship between single nucleotide polymorphisms (SNPs) of ABCB1, encoding the multi-drug transporter P-glycoprotein, and overall survival (OS) in normal karyotype (NK)-AML. Here we extended this material, enabling subgroup analysis based on FLT3 and NPM1 status, to further elucidate the influence of ABCB1 SNPs. De novo NK-AML patients (n = 201) were analysed for 1199G>A, 1236C>T, 2677G>T/A and 3435C>T, and correlations to outcome were investigated. FLT3 wild-type 1236C/C patients have significantly shorter OS compared to patients carrying the variant allele; medians 20 vs. 49 months, respectively, P = 0·017. There was also an inferior outcome in FLT3 wild-type 2677G/G patients compared to patients carrying the variant allele, median OS 20 vs. 35 months, respectively, P = 0·039. This was confirmed in Cox regression analysis. Our results indicate that ABCB1 1236C>T and 2677G>T may be used as prognostic markers to distinguish relatively high risk patients in the intermediate risk FLT3 wild-type group, which may contribute to future individualizing of treatment strategies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/bjh.13097 | DOI Listing |
Blood
January 2025
Massachusetts General Hospital, Boston, Massachusetts, United States.
BMT CTN 1506 ("MORPHO"; NCT02997202) was a randomized phase 3 study of gilteritinib compared to placebo as maintenance therapy after hematopoietic stem cell transplantation (HCT) for patients with FLT3-ITD-mutated acute myeloid leukemia (AML). A key secondary endpoint was to determine the impact on survival of pre- and/or post-HCT measurable residual disease (MRD), as determined using a highly sensitive assay for FLT3-ITD mutations. Generally, gilteritinib maintenance therapy was associated with improved relapse-free survival (RFS) for participants with detectable peri-HCT MRD, whereas no benefit was evident for those lacking detectable MRD.
View Article and Find Full Text PDFActa Med Acad
August 2024
Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.
Objective: This cohort study aimed to examine the impact of the FLT3-ITD mutation on the downstream signaling pathway of PI3K/AKT pathway, the percentage of leukemia stem cells, and the survival of patients receiving D3A7 induction therapy.
Method: Bone marrow mononuclear cells were collected from 20 adult AML patients who had completed D3A7 induction therapy at Cipto Mangunkusumo National General Hospital and Dharmais Cancer Hospital. FLT3-ITD gene mutation was examined by the PCR-sequencing method.
Health Sci Rep
December 2024
Department of Molecular Biology and Biotechnology, Human Genetics Division Atomic Energy Commission Damascus Syria.
Cancer Res
November 2024
1. Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China. 2. Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, 230001, China. 3. Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, 230001, China., Hefei, Anhui, China.
Internal tandem duplication (ITD) in the FMS-like receptor tyrosine kinase-3 (FLT3) is one of the most frequent mutations in acute myeloid leukemia (AML) and is associated with poor prognosis. FLT3-ITD mutations result in endoplasmic reticulum (ER) retention and constitutive autophosphorylation of FLT3. The PR/SET domain 16 (PRDM16) is highly expressed in FLT3-ITD+ AML patients, suggesting it might play a role in leukemogenesis.
View Article and Find Full Text PDFAsian Pac J Cancer Prev
October 2024
Cancer Epidemiology and Biostatistics, Regional Cancer Centre, Thiruvananthapuram, University of Kerala, India.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!