Visual cortex activation to drug cues: a meta-analysis of functional neuroimaging papers in addiction and substance abuse literature.

Drug Alcohol Depend

Department of Psychiatry and Behavioral Sciences, MUSC, Charleston, SC 29425, United States. Electronic address:

Published: October 2014

Background: Although the visual cortex does not typically receive much attention in addiction literature, neuroimaging studies often report significant activity in visual areas when drug users are exposed to drug cues. The purpose of this meta-analysis was to investigate the frequency with which occipital cortex activity is observed during drug cue exposure and to determine its spatial distribution.

Methods: A comprehensive literature search was performed of human functional neuroimaging studies of drug cue-reactivity. Fifty-five studies were used to determine the frequency with which clusters of significant visual cortex activity during visual drug cues versus non-drug cues were reported. The spatial distribution of visual cortex activations was determined via activation likelihood estimation (ALE; FDR corrected, p<0.01) in a subset of these studies (n=24).

Results: Eighty-six percent of studies that reported fMRI results for drug versus neutral visual cues within a substance-dependent group showed significant drug-elicited activity in the visual cortex. ALE revealed clusters in the left secondary visual cortex (BA 19) and clusters in the primary visual cortex (BA 17) that were consistently activated by drug cues.

Conclusions: These data demonstrate that the visual cortex, often overlooked in our discussions of the neural circuitry of addiction, consistently discriminates drug cues from neutral cues in substance dependent populations. While it remains unclear whether drug cue-elicited activation in occipital cortex is related to the rewarding properties of the drug and/or attentional mechanisms, these data support further exploration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4161649PMC
http://dx.doi.org/10.1016/j.drugalcdep.2014.07.028DOI Listing

Publication Analysis

Top Keywords

visual cortex
16
drug cues
12
functional neuroimaging
8
neuroimaging studies
8
activity visual
8
cortex activity
8
visual
6
drug
6
cortex activation
4
activation drug
4

Similar Publications

In literate adults, an area along the left posterior fusiform gyrus that is often referred to as the "visual word form area" (VWFA) responds particularly strongly to written characters compared to other visually similar stimuli. Theoretical accounts differ in whether they attribute the strong left-lateralization of the VWFA to a left-hemisphere bias towards visual features used in script, to competition of visual word form processing with that of other visual stimuli processed in the same general cortical territory (especially faces), or to the well-established left-lateralization of the language system.Here we used functional magnetic resonance imaging to test the last hypothesis by investigating lateralization of the VWFA in participants (male and female) who have right-hemisphere language due to a large left-hemisphere perinatal stroke.

View Article and Find Full Text PDF

Immaturities exist at multiple levels of the developing human visual pathway, starting with immaturities in photon efficiency and spatial sampling in the retina and on through immaturities in early and later stages of cortical processing. Here we use Steady-State Visual Evoked Potentials (SSVEPs) and controlled visual stimuli to determine the degree to which sensitivity to horizontal retinal disparity is limited by the visibility of the monocular half-images, the ability to encode absolute disparity or the ability to encode relative disparity. Responses were recorded from male and female human participants at average ages of 5.

View Article and Find Full Text PDF

Cognition relies on transforming sensory inputs into a generalizable understanding of the world. Mirror neurons have been proposed to underlie this process, mapping visual representations of others' actions and sensations onto neurons that mediate our own, providing a conduit for understanding. However, this theory has limitations.

View Article and Find Full Text PDF

Movie-watching is a central aspect of our lives and an important paradigm for understanding the brain mechanisms behind cognition as it occurs in daily life. Contemporary views of ongoing thought argue that the ability to make sense of events in the 'here and now' depend on the neural processing of incoming sensory information by auditory and visual cortex, which are kept in check by systems in association cortex. However, we currently lack an understanding of how patterns of ongoing thoughts map onto the different brain systems when we watch a film, partly because methods of sampling experience disrupt the dynamics of brain activity and the experience of movie-watching.

View Article and Find Full Text PDF

Efficacy comparison of sodium hyaluronate, corticosteroids, and autologous platelet-rich plasma in the treatment of primary frozen shoulder.

Zhong Nan Da Xue Xue Bao Yi Xue Ban

August 2024

Department of Orthopedics, Third Xiangya Hospital, Central South University, Changsha 410013, China.

Objectives: Primary frozen shoulder is a shoulder joint disease that severely impacts the quality of life of patients, and intra-articular injection is a common treatment method. This study aims to evaluate and compare the therapeutic effects of sodium hyaluronate (SH), corticosteroids (CS), and autologous platelet-rich plasma (PRP) in the treatment primary frozen shoulder.

Methods: A total of 117 patients diagnosed with primary frozen shoulder and treated with a single injection of SH, CS, or PRP into the glenohumeral joint under ultrasound guidance at the Third Xiangya Hospital of Central South University from January 1, 2020, to December 31, 2022, were included in the study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!