The structural preciseness of dendrimers makes them perfect drug delivery carriers, particularly in the form of dendrimer-drug conjugates. Current dendrimer-drug conjugates are synthesized by anchoring drug and functional moieties onto the dendrimer peripheral surface. However, functional groups exhibiting the same reactivity make it impossible to precisely control the number and the position of the functional groups and drug molecules anchored to the dendrimer surface. This structural heterogeneity causes variable pharmacokinetics, preventing such conjugates to be translational. Furthermore, the highly hydrophobic drug molecules anchored on the dendrimer periphery can interact with blood components and alter the pharmacokinetic behavior. To address these problems, we herein report molecularly precise dendrimer-drug conjugates with drug moieties buried inside the dendrimers. Surprisingly, the drug release rates of these conjugates were tailorable by the dendrimer generation, surface chemistry, and acidity.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.201406442DOI Listing

Publication Analysis

Top Keywords

dendrimer-drug conjugates
16
molecularly precise
8
precise dendrimer-drug
8
drug release
8
functional groups
8
drug molecules
8
molecules anchored
8
anchored dendrimer
8
drug
7
conjugates
6

Similar Publications

Enzyme-activatable kidney-targeted dendrimer-drug conjugate for efficient childhood nephrotic syndrome therapy.

Theranostics

December 2024

Department of Pediatrics, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Zhejiang Chinese Medical University, Hangzhou 310006, China.

Childhood nephrotic syndrome (NS) is a serious disease affecting the health and quality of life of children, which is characterized by a series of pathophysiological changes due to the increased permeability of the glomerular membrane to plasma proteins. Low renal drug distribution and inefficient cellular uptake, resulting from cellular dysfunctions of filtration and internalization, are the main barriers to drug treatment in childhood NS, leading to deterioration in nephropathy. However, efficient therapeutic methods against childhood NS are still lacking in clinic.

View Article and Find Full Text PDF

Introduction: Prostate cancer (PC) is the second most common cancer and the fifth most frequent cause of cancer death among men. Prostate-specific membrane antigen (PSMA) expression is associated with aggressive PC, with expression in over 90% of patients with metastatic disease. Those characteristics have led to its use for PC diagnosis and therapies with radiopharmaceuticals, antibody-drug conjugates, and nanoparticles.

View Article and Find Full Text PDF

Prednisone and ibuprofen conjugate Janus dendrimers and their anticancer activity.

Steroids

May 2024

Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior, Coyoacán C.P. 04510, México D.F., Mexico. Electronic address:

Drug release from hyperbranched Janus dendrimer-drug conjugates and their subsequent activity are influenced by the different drugs in each dendron and the linker. To understand these effects, we synthetized new Janus-type dendrimers of first and second generation. One dendron with 2,2-Bis(hydroxymethyl)propionic acid functionalized with ibuprofen and the second dendron was obtained with 3-aminopropanol-amidoamine and prednisone.

View Article and Find Full Text PDF

Background: Mitchell syndrome is a rare, neurodegenerative disease caused by an ACOX1 gain-of-function mutation (c.710A>G; p.N237S), with fewer than 20 reported cases.

View Article and Find Full Text PDF

Toxicity to hepatocytes caused by various insults including drugs is a common cause of chronic liver failure requiring transplantation. Targeting therapeutics specifically to hepatocytes is often a challenge since they are relatively nonendocytosing unlike the highly phagocytic Kupffer cells in the liver. Approaches that enable targeted intracellular delivery of therapeutics to hepatocytes have significant promise in addressing liver disorders.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!