Background: The ameloblastoma is a benign but locally aggressive odontogenic neoplasm with a high recurrence rate. While significant progress has been made in our understanding regarding the role of tumoral vasculature relative to the diverse behavioral characteristics of this tumor, no attention has been paid to a distinct subset of blood vessels entrapped within its epithelial compartment. As vascular niches are known to influence tumoral growth, clarification of these vessels is important. The objectives of this study were to investigate the morphologic characteristics of intra-epithelially entrapped blood vessels (IEBVs) in ameloblastoma and to speculate on their relevance.
Materials And Method: Here, we evaluated the frequency, microvessel density (MVD), morphology, and distribution pattern of IEBVs in 77 ameloblastoma of different subtypes based on their immunoreactivity for endothelial markers (CD34, CD31, CD105), vascular tight junction protein (claudin-5), pericyte [α-smooth muscle actin (α-sma)], and vascular basement membrane (collagen IV).
Results: IEBVs were heterogeneously detected in ameloblastoma. Their mean MVD (CD34 = 15.46 ± 7.25; CD31 = 15.8 ± 5.04; CD105 = 0.82 ± 0.51) showed no significant correlation with different subtypes, and between primary and recurrent tumors (P > 0.05). These microvessels may occur as single/clusters of capillary sprouts, or formed compressed branching/non-branching slits entrapped within the epithelial compartment, and in direct apposition with polyhedral/granular neoplastic epithelial cells. They expressed proteins for endothelial tight junctions (claudin-5-positive) and pericytes (α-sma-positive) but had deficient basement membrane (collagen IV weak to absent). Aberrant expression for CD34, CD31, and CD105 in tumor epithelium was variably observed.
Conclusions: Although rare in occurrence, identification of IEBVs in ameloblastoma could potentially represent a new paradigm for vascular assessment of this neoplasm.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jop.12247 | DOI Listing |
ACS Nano
January 2025
Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, PR China.
Extracellular matrix (ECM)-based small-diameter vascular grafts (SDVGs, inner diameter (ID) < 6 mm) hold great promise for clinical applications. However, existing ECM-based SDVGs suffer from limited donor availability, complex purification, high cost, and insufficient mechanical properties. SDVGs with ECM-like structure and function, and good mechanical properties were rapidly prepared by optimizing common materials and preparation, which can improve their clinical prospects.
View Article and Find Full Text PDFActa Neurochir (Wien)
January 2025
Division of Neuroradiology and Joint Department of Medical Imaging, University Health Network and Toronto Western Hospital, Toronto, ON, M5T 2S8, Canada.
Purpose: It was noticed that anterior choroidal artery (AChoA) aneurysms appear to rupture at relatively smaller sizes compared with aneurysms in other intracranial locations, based on anecdotal clinical experience. We therefore aimed to compare ruptured AChoA aneurysms with other ruptured aneurysms in other intracranial locations, pertaining to aneurysm dimensions. This may help in finding out if the rupture risk stratification, based on the amalgamation of aneurysms of multiple locations in one group, precisely estimates aneurysm rupture risk.
View Article and Find Full Text PDFNeuroinformatics
January 2025
Neuro-Electronics Research Flanders, Kapeldreef 75, Leuven, 3001, Belgium.
The brain is composed of a dense and ramified vascular network of arteries, veins and capillaries of various sizes. One way to assess the risk of cerebrovascular pathologies is to use computational models to predict the physiological effects of reduced blood supply and correlate these responses with observations of brain damage. Therefore, it is crucial to establish a detailed 3D organization of the brain vasculature, which could be used to develop more accurate in silico models.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Nephrology, Yiyang Central Hospital, 118 Kangfubei Road, Yiyang, 413000, Hunan, China.
Vascular calcification is considered to be a killer of the cardiovascular system, involved inflammation and immunity. There is no approved therapeutic strategy for the prevention of vascular calcification. Sinomenine exhibited anti-inflammatory and immunosuppressive effects.
View Article and Find Full Text PDFSci Rep
January 2025
Computational Fluid Dynamics Laboratory, School of Mechanical Engineering, VIT, Vellore, 632014, India.
Stenosis causes the narrowing of arteries due to plaque buildup, which impedes blood flow and affects flow dynamics. This work numerically analyzes flow fluctuations in stenosed arteries under realistic physiological conditions (resting and exercise) and external body acceleration. The artery is inclined at angle , and blood rheology is modeled using a generalized power-law fluid.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!