A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Genome sequence analysis of in vitro and in vivo phenotypes of Bunyamwera and Ngari virus isolates from northern Kenya. | LitMetric

Genome sequence analysis of in vitro and in vivo phenotypes of Bunyamwera and Ngari virus isolates from northern Kenya.

PLoS One

Human Health Division, International Centre of Insect Physiology and Ecology, Nairobi, Kenya; Centre for Virus Research, Kenya Medical Research Institute, Nairobi, Kenya; Division of Emerging Infectious Disease, United States Army Medical Research Unit, Nairobi, Kenya.

Published: May 2015

Biological phenotypes of tri-segmented arboviruses display characteristics that map to mutation/s in the S, M or L segments of the genome. Plaque variants have been characterized for other viruses displaying varied phenotypes including attenuation in growth and/or pathogenesis. In order to characterize variants of Bunyamwera and Ngari viruses, we isolated individual plaque size variants; small plaque (SP) and large plaque (LP) and determined in vitro growth properties and in vivo pathogenesis in suckling mice. We performed gene sequencing to identify mutations that may be responsible for the observed phenotype. The LP generally replicated faster than the SP and the difference in growth rate was more pronounced in Bunyamwera virus isolates. Ngari virus isolates were more conserved with few point mutations compared to Bunyamwera virus isolates which displayed mutations in all three genome segments but majority were silent mutations. Contrary to expectation, the SP of Bunyamwera virus killed suckling mice significantly earlier than the LP. The LP attenuation may probably be due to a non-synonymous substitution (T858I) that mapped within the active site of the L protein. In this study, we identify natural mutations whose exact role in growth and pathogenesis need to be determined through site directed mutagenesis studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4143288PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0105446PLOS

Publication Analysis

Top Keywords

virus isolates
16
bunyamwera virus
12
bunyamwera ngari
8
ngari virus
8
suckling mice
8
bunyamwera
5
virus
5
mutations
5
genome sequence
4
sequence analysis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!