Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The objective of this study was to determine to what extent verbal fluency measures can be used as performance validity indicators during neuropsychological evaluation. Participants were clinically referred for neuropsychological evaluation in an urban-based Veteran's Affairs hospital. Participants were placed into 2 groups based on their objectively evaluated effort on performance validity tests (PVTs). Individuals who exhibited credible performance (n = 431) failed 0 PVTs, and those with poor effort (n = 192) failed 2 or more PVTs. All participants completed the Controlled Oral Word Association Test (COWAT) and Animals verbal fluency measures. We evaluated how well verbal fluency scores could discriminate between the 2 groups. Raw scores and T scores for Animals discriminated between the credible performance and poor-effort groups with 90% specificity and greater than 40% sensitivity. COWAT scores had lower sensitivity for detecting poor effort. A combination of FAS and Animals scores into logistic regression models yielded acceptable group classification, with 90% specificity and greater than 44% sensitivity. Verbal fluency measures can yield adequate detection of poor effort during neuropsychological evaluation. We provide suggested cut points and logistic regression models for predicting the probability of poor effort in our clinical setting and offer suggested cutoff scores to optimize sensitivity and specificity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/23279095.2013.873439 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!