Recent evidence suggests that normal aging is typically accompanied by impairment in the ability to perceive the global (overall) motion of visual objects in the world. The purpose of this study was to examine the interplay between age-related changes in the ability to perceive translational global motion (up vs. down) and important factors such as the spatial extent (size) over which movement occurs and how cluttered the moving elements are (density). We used random dot kinematograms (RDKs) and measured motion coherence thresholds (% signal elements required to reliably discriminate global direction) for young and older adults. We did so as a function of the number and density of local signal elements, and the aperture area in which they were displayed. We found that older adults' performance was relatively unaffected by changes in aperture size, the number and density of local elements in the display. In young adults, performance was also insensitive to element number and density but was modulated markedly by display size, such that motion coherence thresholds decreased as aperture area increased (participants required fewer local elements to move coherently to determine the overall image direction). With the smallest apertures tested, young participants' motion coherence thresholds were considerably higher (~1.5 times worse) than those of their older counterparts. Therefore, when RDK size is relatively small, older participants were actually better than young participants at processing global motion. These findings suggest that the normal (disease-free) aging process does not lead to a general decline in perceptual ability and in some cases may be visually advantageous. The results have important implications for the understanding of the consequences of aging on visual function and a number of potential explanations are explored. These include age-related changes in spatial summation, reduced cortical inhibition, neural blur and attentional resource allocation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4126366 | PMC |
http://dx.doi.org/10.3389/fnagi.2014.00199 | DOI Listing |
J Orthop Case Rep
January 2025
Lokmanya Tilak Municipal Medical college, Sion Mumbai., India.
Introduction: Road traffic accidents (RTA) account for a sizable portion of morbidity and mortality globally, with a particularly high incidence among young and active individuals. Patients presenting with polytrauma require a multidisciplinary approach guided by protocols for advanced trauma life support.
Case Report: We report the case of a 31-year-old female, transferred-in to our center following primary care after an RTA on June 17th, 2023.
J Infect Public Health
December 2024
Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar. Electronic address:
Sensors (Basel)
January 2025
School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea.
Video frame interpolation (VFI) is a task that generates intermediate frames from two consecutive frames. Previous studies have employed two main approaches to extract the necessary information from both frames: pixel-level synthesis and flow-based methods. However, when synthesizing high-resolution videos using VFI, each approach has its limitations.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Shenyang Research Institute, China Coal Technology and Engineering Group, Shenyang 113122, China.
The coal industry is a high risk, high difficulty industry, and the annual global mine accident rate is high, so the safety of coal mine underground operations has been a concern. With the development of technology, the application of intelligent security technology in coal mine safety has broad prospects. In this paper, the research progress of vital signs monitoring and support equipment for underground personnel in coal mines is reviewed.
View Article and Find Full Text PDFVet Clin North Am Equine Pract
January 2025
Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Colorado State University Veterinary Teaching Hospital, Equine Orthopaedic Research Center, 2250 Gillette Drive, Fort Collins, CO 80523, USA.
Rehabilitation following muscle injury is critical in restoring the equine athlete to full function. Rehabilitation protocols should be tailored to each patient's global functional assessment, taking into account sports-specific demands, goals for return-to-performance, and overall prognosis. Rehabilitation protocols are often designed to modulate pain, enhance repair, improve proprioception, increase flexibility, restore muscle strength, joint range-of-motion, and neuromotor control.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!