Structure of the GH1 domain of guanylate kinase-associated protein from Rattus norvegicus.

Biochem Biophys Res Commun

College of Pharmacy, Chonnam National University, Gwangju 500-757, South Korea. Electronic address:

Published: September 2014

Guanylate-kinase-associated protein (GKAP) is a scaffolding protein that links NMDA receptor-PSD-95 to Shank-Homer complexes by protein-protein interactions at the synaptic junction. GKAP family proteins are characterized by the presence of a C-terminal conserved GKAP homology domain 1 (GH1) of unknown structure and function. In this study, crystal structure of the GH1 domain of GKAP from Rattus norvegicus was determined in fusion with an N-terminal maltose-binding protein at 2.0 Å resolution. The structure of GKAP GH1 displays a three-helix bundle connected by short flexible loops. The predicted helix α4 which was not visible in the crystal structure associates weakly with the helix α3 suggesting dynamic nature of the GH1 domain. The strict conservation of GH1 domain across GKAP family members and the lack of a catalytic active site required for enzyme activity imply that the GH1 domain might serve as a protein-protein interaction module for the synaptic protein clustering.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2014.08.073DOI Listing

Publication Analysis

Top Keywords

gh1 domain
20
structure gh1
8
rattus norvegicus
8
gkap family
8
crystal structure
8
domain gkap
8
domain
6
gkap
6
gh1
6
structure
5

Similar Publications

Ammonia electrosynthesis from nitrate using a stable amorphous/crystalline dual-phase Cu catalyst.

Nat Commun

January 2025

State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.

Renewable energy-driven electrocatalytic nitrate reduction reaction presents a low-carbon and sustainable route for ammonia synthesis under mild conditions. Yet, the practical application of this process is currently hindered by unsatisfactory electrocatalytic activity and long-term stability. Herein we achieve high-rate ammonia electrosynthesis using a stable amorphous/crystalline dual-phase Cu catalyst.

View Article and Find Full Text PDF

Structural studies of β-glucosidase from the thermophilic bacterium Caldicellulosiruptor saccharolyticus.

Acta Crystallogr D Struct Biol

October 2024

Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 116 35 Athens, Greece.

β-Glucosidase from the thermophilic bacterium Caldicellulosiruptor saccharolyticus (Bgl1) has been denoted as having an attractive catalytic profile for various industrial applications. Bgl1 catalyses the final step of in the decomposition of cellulose, an unbranched glucose polymer that has attracted the attention of researchers in recent years as it is the most abundant renewable source of reduced carbon in the biosphere. With the aim of enhancing the thermostability of Bgl1 for a broad spectrum of biotechnological processes, it has been subjected to structural studies.

View Article and Find Full Text PDF

Plant-specific transcriptional regulators called TELOMERE REPEAT BINDING proteins (TRBs) combine two DNA-binding domains, the GH1 domain, which binds to linker DNA and is shared with H1 histones, and the Myb/SANT domain, which specifically recognizes the telobox DNA-binding site motif. TRB1, TRB2, and TRB3 proteins recruit Polycomb group complex 2 (PRC2) to deposit H3K27me3 and JMJ14 to remove H3K4me3 at gene promoters containing telobox motifs to repress transcription. Here, we demonstrate that TRB4 and TRB5, two related paralogs belonging to a separate TRB clade conserved in spermatophytes, regulate the transcription of several hundred genes involved in developmental responses to environmental cues.

View Article and Find Full Text PDF

Cold-active enzymes support life at low temperatures due to their ability to maintain high activity in the cold and can be useful in several biotechnological applications. Although information on the mechanisms of enzyme cold adaptation is still too limited to devise general rules, it appears that very diverse structural and functional changes are exploited in different protein families and within the same family. In this context, we studied the cold adaptation mechanism and the functional properties of a member of the glycoside hydrolase family 1 (GH1) from the Antarctic bacterium Marinomonas sp.

View Article and Find Full Text PDF

Introduction: β-Glucosidase serves as the pivotal rate-limiting enzyme in the cellulose degradation process, facilitating the hydrolysis of cellobiose and cellooligosaccharides into glucose. However, the widespread application of numerous β-glucosidases is hindered by their limited thermostability and low glucose tolerance, particularly in elevated-temperature and high-glucose environments.

Methods: This study presents an analysis of a β-glucosidase gene belonging to the GH1 family, denoted , which was isolated from the metagenomic repository of Hehua hot spring located in Tengchong, China.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!