Motivation: Translating findings in rodent models to human models has been a cornerstone of modern biology and drug development. However, in many cases, a naive 'extrapolation' between the two species has not succeeded. As a result, clinical trials of new drugs sometimes fail even after considerable success in the mouse or rat stage of development. In addition to in vitro studies, inter-species translation requires analytical tools that can predict the enriched gene sets in human cells under various stimuli from corresponding measurements in animals. Such tools can improve our understanding of the underlying biology and optimize the allocation of resources for drug development.
Results: We developed an algorithm to predict differential gene set enrichment as part of the sbv IMPROVER (systems biology verification in Industrial Methodology for Process Verification in Research) Species Translation Challenge, which focused on phosphoproteomic and transcriptomic measurements of normal human bronchial epithelial (NHBE) primary cells under various stimuli and corresponding measurements in rat (NRBE) primary cells. We find that gene sets exhibit a higher inter-species correlation compared with individual genes, and are potentially more suited for direct prediction. Furthermore, in contrast to a similar cross-species response in protein phosphorylation states 5 and 25 min after exposure to stimuli, gene set enrichment 6 h after exposure is significantly different in NHBE cells compared with NRBE cells. In spite of this difference, we were able to develop a robust algorithm to predict gene set activation in NHBE with high accuracy using simple analytical methods.
Availability And Implementation: Implementation of all algorithms is available as source code (in Matlab) at http://bhanot.biomaps.rutgers.edu/wiki/codes_SC3_Predicting_GeneSets.zip, along with the relevant data used in the analysis. Gene sets, gene expression and protein phosphorylation data are available on request.
Contact: hormoz@kitp.ucsb.edu.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4325538 | PMC |
http://dx.doi.org/10.1093/bioinformatics/btu569 | DOI Listing |
Biochem Genet
January 2025
Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
This study aimed to identify shared gene expression related to circadian rhythm disruption in polycystic ovary syndrome (PCOS) and non-alcoholic fatty liver disease (NAFLD) to discover common diagnostic biomarkers. Visceral fat RNA samples were collected from 12 PCOS and 14 non-PCOS patients, a sample size representing the clinical situation and sufficient to capture PCOS gene expression profiles. Along with liver transcriptome profiles from NAFLD patients, these data were analyzed to identify crosstalk circadian rhythm-related genes (CRRGs) between the diseases.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Department of Clinical Science, Science and Research Branch, Islamic Azad University, Tehran, Iran.
Background: Infertility is a significant issue in spinal cord injury (SCI) patients. Men with SCI often experience erectile and ejaculatory dysfunctions, and low sperm quality leading to impaired fertility. In this study, we investigated the effectiveness of Erythropoietin (EPO)alginate/chitosan (CH-AL) hydrogel on SCI-induced male rat infertility.
View Article and Find Full Text PDFJ Mol Evol
January 2025
Faculty of Biology, Institute of Evolutionary Biology, University of Warsaw, Ul. Żwirki I Wigury 101, 02-089, Warsaw, Poland.
Expansion and losses of gene families are important drivers of molecular evolution. A recent survey of Fox genes in flatworms revealed that this superfamily of multifunctional transcription factors, present in all animals, underwent extensive losses and expansions during platyhelminth evolution. In this paper, I analyzed Fox gene complement in four additional species of platyhelminths, that represent early-branching lineages in the flatworm phylogeny: catenulids (Stenostomum brevipharyngium and Stenostomum leucops) and macrostomorphs (Macrostomum hystrix and Macrostomum cliftonense).
View Article and Find Full Text PDFVirulence
December 2025
Manchester Fungal Infection Group (MFIG), Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
Sulfur metabolism is an essential aspect of fungal physiology and pathogenicity. Fungal sulfur metabolism comprises anabolic and catabolic routes that are not well conserved in mammals, therefore is considered a promising source of prospective novel antifungal targets. To gain insight into sulfur-related metabolism during infection, we used a NanoString custom nCounter-TagSet and compared the expression of 68 key metabolic genes in different murine models of invasive pulmonary aspergillosis, at 3 time-points, and under a variety of conditions.
View Article and Find Full Text PDFCancer Cell Int
January 2025
Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin 2nd Road, Shanghai, 20025, China.
Background: Methyltransferase-like (METTL) family protein plays a crucial role in the progression of malignancies. However, the function of METTL17 across pan-cancers, especially in hepatocellular carcinoma (HCC) is still poorly understood.
Methods: All original data were downloaded from TCGA, GTEx, HPA, UCSC databases and various data portals.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!