Background: Periodontitis is a chronic inflammatory disease initiated by a synergistic and dysbiotic microbial community that elicits a gingival inflammatory response leading to tissue breakdown. Periodontitis shares many characteristics with other chronic inflammatory diseases, including abnormal glycosylation of immunoglobulin (Ig)G. The current authors have previously demonstrated that IgG from gingival crevicular fluid (GCF) of patients with chronic periodontitis contains galactose (Gal)-deficient IgG.
Methods: The origin of the aberrantly glycosylated IgG was determined by measuring levels of Gal-deficient IgG in GCF and serum from patients with periodontitis and non-periodontitis controls using lectin enzyme-linked immunosorbent assay. The Ig-producing cells and the proportion of cells producing Gal-deficient IgG were immunohistochemically determined in gingival tissues from patients with periodontitis by fluorescence microscopy. The results were statistically evaluated and correlated with clinical data.
Results: The results indicate that GCF of patients with periodontitis had higher levels of Gal-deficient IgG compared with controls (P = 0.002). In gingival tissues, IgG was the dominant isotype among Ig-producing cells, and 60% of IgG-positive cells produced Gal-deficient IgG. Moreover, the proportion of Gal-deficient IgG-producing cells directly correlated with clinical parameters of probing depth and clinical attachment loss (AL).
Conclusion: These results suggest that the presence of Gal-deficient IgG is associated with gingival inflammation and may play a role in the worsening of clinical parameters of periodontitis, such as AL.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1902/jop.2014.140212 | DOI Listing |
J Periodontol
December 2014
Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL.
Background: Periodontitis is a chronic inflammatory disease initiated by a synergistic and dysbiotic microbial community that elicits a gingival inflammatory response leading to tissue breakdown. Periodontitis shares many characteristics with other chronic inflammatory diseases, including abnormal glycosylation of immunoglobulin (Ig)G. The current authors have previously demonstrated that IgG from gingival crevicular fluid (GCF) of patients with chronic periodontitis contains galactose (Gal)-deficient IgG.
View Article and Find Full Text PDFBiochemistry
July 2010
Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0524, USA.
Aberrancies in IgA1 glycosylation have been linked to the pathogenesis of IgA nephropathy (IgAN), a kidney disease characterized by deposits of IgA1-containing immune complexes in the glomerular mesangium. IgA1 from IgAN patients is characterized by the presence of galactose (Gal)-deficient O-glycans in the hinge region that can act as epitopes for anti-glycan IgG or IgA1 antibodies. The resulting circulating immune complexes are trapped in the glomerular mesangium of the kidney where they trigger localized inflammatory responses by activating mesangial cells.
View Article and Find Full Text PDFKidney Blood Press Res
April 2008
Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294-2170, USA.
Studies of the properties of immune complexes (IC) in the circulation, urine, and mesangium of IgA nephropathy (IgAN) patients have provided data relevant to the pathogenesis of this disease. IC contain predominantly polymeric IgA1 molecules which are deficient in galactose (Gal) residues on O-linked glycan chains in the hinge region (HR) of their heavy (H) chains. As a result of this aberrancy, a novel antigenic determinant(s) involving N-acetylgalactosamine (GalNAc) and perhaps sialic acid (SA) of O-linked glycans is generated and recognized by naturally occurring GalNAc-specific antibodies.
View Article and Find Full Text PDFTransplantation
July 2007
Institute of Immunology, Rikshospitalet-Radiumhospitalet Medical Center and Faculty of Medicine, University of Oslo, Oslo, Norway.
Background: The generation of Galalpha1-3Gal (Gal) transferase deficient pigs has increased the interest in non-Gal antigens potentially representing important targets for xenoreactive antibody binding leading to xenograft rejection. The present study addressed the levels and immunoglobulin isotypes of preformed human anti-non-Gal antibodies and their potential to activate porcine endothelial cells.
Methods: Porcine endothelial cells lacking the Gal epitope (Gal-/-) were used to measure immunoglobulin (Ig) M and IgG subclass anti-non-Gal antibodies, using sera from 80 blood donors and pooled human AB serum.
Contrib Nephrol
July 2007
University of Alabama at Birmingham, Department of Microbiology, Birmingham, AL 35294-2170, USA.
The circulating immune complexes in IgA nephropathy (IgAN) are composed of galactose (Gal)-deficient IgA1 bound to IgG or IgA1 antibodies specific for hinge-region O-linked glycans of Gal-deficient IgA1. To analyze properties of the anti-glycan antibodies, we determined the binding of serum IgG and IgG secreted by Epstein-Barr virus (EBV)- immortalized B cells from patients with biopsy-proven IgAN (n = 12) and healthy controls (n = 5) to a panel of antigens coated on ELISA plates. These antigens were: (1) enzymatically desialylated and degalactosylated IgA1 myeloma protein (dd-IgA1), (2) Fab fragment of Gal-deficient IgA1 containing part of the hinge region with O-glycans (Fab-IgA1), (3) synthetic hinge-region peptide linked to bovine albumin (HR-BSA), and (4) synthetic hingeregion glycopeptide with three GalNAc residues linked to BSA (HR-GalNAc-BSA).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!