To investigate the protective effects and possible mechanism of Mycelium of Hirsutella hepiali Chen et Shen (MHCS) on metabolic syndromes, free fatty acid and MHCS-treated hepatocytes were used for detecting autophagy-related LC3, p62 and lipid accumulation. Moreover, high fat diet fed mice were used to establish metabolic syndromes model. 50-weeks age mice were randomly divided into: control group, model group and MHCS group. At 80-weeks age, 15 mice were randomly chosen from each group separately for examining oral glucose tolerance, serum insulin, insulin-like growth factor 1 (IGF-1), hepatic LC3, p62, p-NF-kappaB p65, NF-kappaB p65, IL-6 and CXCL-8. Moreover, insulin resistance index (IRI) was calculated. Hepatic pathological changes, including vacuoles, lipids accumulation and fibrosis were observed. Remaining mice were fed with diet separately to 110 weeks-age for statistics of mortality. MHCS promoted autophagy of free fatty acid treated hepatocytes. Mice fed with high fat plus MHCS diet exhibited improved oral glucose tolerance, insulin resistance, hepatic pathology, inflammation, mortality and activated autophagy. The protective effects of MHCS against metabolic syndroms might be through the activation of hepatic autophagy.
Download full-text PDF |
Source |
---|
Pharmacol Rep
January 2025
Research Laboratory CoreLab of the Medical University of Lodz, Łódź, Poland.
Background: The current study investigated the effects of high-fat diet on acute response to 3,4-methylenedioxypyrovalerone (MDPV) in mice. MDPV is a beta-cathinone derivative endowed with psychostimulant activity. Similarly to recreational substances, consumption of palatable food stimulates the mesolimbic dopaminergic system, resulting in neuroadaptive changes.
View Article and Find Full Text PDFAlzheimers Dement
January 2025
Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
Introduction: Malnutrition correlates with neuropsychiatric symptoms (NPSs) in Alzheimer's disease (AD); however, the potential mechanism underlying this association remains unclear.
Methods: Baseline and longitudinal associations of nutritional status with NPSs were analyzed in 374 patients on the AD continuum and 61 healthy controls. Serum biomarkers, behavioral tests, cerebral neurotransmitters, and differentially gene expression were evaluated in standard and malnourished diet-fed transgenic APPswe/PSEN1dE9 (APP/PS1) mice.
J Orthop Translat
January 2025
Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
Background: Bone marrow inflammaging is a low-grade chronic inflammation that induces bone marrow aging. Multiple age-related and inflammatory diseases involve bone marrow inflammaging. Whether common pathological pathways exist in bone marrow inflammaging remains unclear.
View Article and Find Full Text PDFMol Med
January 2025
Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, China.
The incidence of obesity is increasing annually worldwide. A high-fat diet (HFD) causes intestinal barrier damage, but effective interventions are currently unavailable. Our previous work demonstrated the therapeutic effect of nobiletin on obese mice; thus, we hypothesized that nobiletin could reverse HFD-induced damage to the intestinal barrier.
View Article and Find Full Text PDFGut Microbes
December 2025
Microbiome-Host Interactions, Institut Pasteur, Université Paris Cité, INSERM U1306, CNRS UMR6047, Paris, France.
Metabolic syndrome is, in humans, associated with alterations in the composition and localization of the intestinal microbiota, including encroachment of bacteria within the colon's inner mucus layer. Possible promoters of these events include dietary emulsifiers, such as carboxymethylcellulose (CMC) and polysorbate-80 (P80), which, in mice, result in altered microbiota composition, encroachment, low-grade inflammation and metabolic syndrome. While assessments of gut microbiota composition have largely focused on fecal/luminal samples, we hypothesize an outsized role for changes in mucus microbiota in driving low-grade inflammation and its consequences.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!