Microtubule acetylation regulates dynamics of KIF1C-powered vesicles and contact of microtubule plus ends with podosomes.

Eur J Cell Biol

Institut für medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Eppendorf, Martinistr. 52, 20246 Hamburg, Germany. Electronic address:

Published: October 2014

Microtubule dynamics are important for a variety of key cellular functions such as intracellular trafficking, adjustment of the cell surface proteome, or adhesion structure turnover. In the current study, we investigate the effects of altered microtubule acetylation levels on the subcellular distribution of kinesins and actin cytoskeletal architecture in primary human macrophages. Microtubule acetylation was altered by overexpression or siRNA-induced depletion of the acetylase MEC-17, or by blocking α-tubulin deacetylation by addition of the inhibitor tubacin. We show that microtubule acetylation influences the subcellular distribution of vesicles associated with the kinesin KIF1C, as well as their directionality, velocity and run length. Moreover, tubulin acetylation alters the targeting frequency of microtubule plus ends on podosomes and influences the number of podosomes per cell and thus the matrix-degrading capacity of macrophages. Collectively, our results point to α-tubulin acetylation as an important modification that impacts on kinesin vesicle dynamics, actin cytoskeletal architecture and cellular function of macrophages.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejcb.2014.07.006DOI Listing

Publication Analysis

Top Keywords

microtubule acetylation
16
microtubule ends
8
ends podosomes
8
subcellular distribution
8
actin cytoskeletal
8
cytoskeletal architecture
8
microtubule
7
acetylation
5
acetylation regulates
4
regulates dynamics
4

Similar Publications

Drug Development.

Alzheimers Dement

December 2024

ADEL Institute of Science & Technology (AIST), ADEL, Inc., Seoul, Korea, Republic of (South).

Background: Abnormal aggregation and accumulation of tau is a hallmark of tauopathy including Alzheimer's disease. Effective targeting of tau for therapeutic purposes requires a clear understanding of its epitope landscape with identification of a key pathogenic tau species. Despite numerous proposed and tested tau epitopes, ranging from the N-terminus to the microtubule-binding region and C-terminus, the most effective target remains elusive.

View Article and Find Full Text PDF

Over the past few decades, microtubules have been targeted by various anticancer drugs, including paclitaxel and eribulin. Despite their promising effects, the development of drug resistance remains a challenge. We aimed to define a novel cell death mechanism that targets microtubules using eribulin and to assess its potential in overcoming eribulin resistance.

View Article and Find Full Text PDF

Stress causes lipid droplet accumulation in chondrocytes by impairing microtubules.

Osteoarthritis Cartilage

December 2024

Department of Oral Anatomy and Physiology and TMD, College of Stomatology, the Fourth Military Medical University, Xi'an, China; Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai, China. Electronic address:

Objective: Abnormal mechanical stress is intimately coupled with osteoarthritis. Microtubules play a vital role in the regulation of mechanotransduction and intracellular transport. The purpose of the present study was to investigate the impact of stress-induced microtubule impairment on intracellular transport and lipid droplet (LD) accumulation in chondrocytes.

View Article and Find Full Text PDF

Spotlight on YAP: Unlocking New Insights to Overcome the Barriers to Heart Regeneration.

Circulation

January 2025

Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA (N.V., R.T.L.).

This editorial refers to “Microtubules Sequester Acetylated YAP in the Cytoplasm and Inhibit Heart Regeneration” by Liu . and “YAP Overcomes Mechanical Barriers to Induce Mitotic Rounding and Adult Cardiomyocyte Division” by Morikawa

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a neurodegenerative disease, which is mainly characterized by the abnormal deposition of β-amyloid peptide (Aβ) and Tau. Since Tau aggregation is more closely associated with synaptic loss, neurodegeneration, and cognitive decline than Aβ, the correlation between Tau and cognitive function in AD has gradually gained attention. The posttranslational modifications (PTMs) of Tau are key factors contributing to its pathological changes, which include phosphorylation, acetylation, ubiquitination, glycosylation, glycation, small ubiquitin-like modifier mediated modification (SUMOylation), methylation, succinylation, etc.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!