This study investigates the optically stimulated luminescence (OSL) and the photo-transferred thermoluminescence (PTTL) signals in quartz single crystals showing a strong TL peak near 300°C after being sensitized by irradiation with 25kGy of gamma rays and heating at 400°C. Natural and sensitized samples were prepared from two crystals with different sensitivity levels in the 300°C TL region. Continuous-wave (CW) and linearly-modulated (LM) OSL signals were stimulated with blue light-emitting diodes during 40 and 1000s, respectively. Two components were isolated from the CW-OSL signals of sensitized samples. These components were clearly seen in LM-OSL measurements together with two long-term components. LM-OSL showed that the sensitization process considered in this study sensitized an ultrafast OSL component of these crystals. The similar behavior found for the thermal stabilities of OSL and TL signals and the dependence of these signals with sample origins suggested that the trapping site related to the ultrafast component is also related to the TL process of the sensitized peak. The PTTL signal induced by blue LEDs increased the intensity of the sensitized glow peak. On the other hand, a remarkable reduction in the intensity of this peak as a result of the accumulated effect of blue light exposure was clearly seen in both kinds of crystals. These results were explained by a mechanism of competition between optically unstable deep traps and trap levels responsible to the sensitized TL peak.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.apradiso.2014.07.017DOI Listing

Publication Analysis

Top Keywords

osl photo-transferred
8
quartz single
8
single crystals
8
sensitized
8
sensitized samples
8
osl signals
8
sensitized peak
8
osl
5
crystals
5
signals
5

Similar Publications

This study investigates the optically stimulated luminescence (OSL) and the photo-transferred thermoluminescence (PTTL) signals in quartz single crystals showing a strong TL peak near 300°C after being sensitized by irradiation with 25kGy of gamma rays and heating at 400°C. Natural and sensitized samples were prepared from two crystals with different sensitivity levels in the 300°C TL region. Continuous-wave (CW) and linearly-modulated (LM) OSL signals were stimulated with blue light-emitting diodes during 40 and 1000s, respectively.

View Article and Find Full Text PDF

PTOSL response of commercial Al2O3:C detectors to ultraviolet radiation.

Radiat Prot Dosimetry

April 2013

FUNDACENTRO, MTE, Rua Capote Valente, 710, São Paulo 05049-002, Brazil.

The photo-transferred optically stimulated luminescence (PTOSL) technique using Al2O3:C detectors has been suggested as a good option for ultraviolet (UV) radiation dosimetry. The objective of this work was to study the PTOSL response of Al2O3:C InLight detectors and the OSL microStar reader of Landauer. The parameters such as radiation pre-dose, optical treatment time and UV illumination time were determined.

View Article and Find Full Text PDF

Direct evidence for the participation of band-tails and excited-state tunnelling in the luminescence of irradiated feldspars.

J Phys Condens Matter

December 2009

Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, 2629 JB Delft, The Netherlands. Institute of Mathematics and Physics, Aberystwyth University, Aberystwyth SY23 3BZ, UK.

The significance and extent of band-tail states in the luminescence and dosimetry properties of natural aluminosilicates (feldspars) is investigated by means of studies using low temperature (10 K) irradiation and optically stimulated luminescence (OSL) stimulation spectroscopy, and thermoluminescence (TL) in the range 10-200 K, made in comparison with high temperature (300 K) irradiation and photo-transferred OSL and TL investigations undertaken at low temperature. These measurements allow mappings of the band-tails to be made; they are found to be ∼0.4 eV in extent in the typical materials studied.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!