Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The glycosaminoglycan (GAG) family is characterized by covalently linked repeating disaccharides forming long unbranched polysaccharide chains. Thus far in higher eukaryotes, the family consists of chondroitin sulfate (CS), heparin/heparan sulfate (HS), dermatan sulfate (DS), and hyaluronan (HA). All GAG chains (except HA) are characteristically modified by varying amounts of esterified sulfate. One or more GAG chains are usually found in nature bound to polypeptide backbones in the form of proteoglycans; HA is the exception and is not synthesized covalently bound to a protein. Proteoglycans, and especially their GAG components, participate in numerous biologically significant interactions with growth factors, chemokines, morphogens, guidance molecules, survival factors, and other extracellular and cell-surface components. These interactions are often critical to the basic developmental processes of cellular proliferation and differentiation, as well as to both the onset of disease sequelae and the prevention of disease progression. In the nervous system, GAG/proteoglycan-mediated interactions participate in proliferation and synaptogenesis, neural plasticity, and regeneration. This review focuses on the structure, chemistry, and function of GAGs in nervous system development, disease, and injury response.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-4939-1154-7_5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!