Activity-dependent regulation of astrocyte GAT levels during synaptogenesis.

Nat Neurosci

1] Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts, USA. [2] Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, Massachusetts, USA.

Published: October 2014

Astrocytic uptake of GABA through GABA transporters (GATs) is an important mechanism regulating excitatory/inhibitory balance in the nervous system; however, mechanisms by which astrocytes regulate GAT levels are undefined. We found that at mid-pupal stages the Drosophila melanogaster CNS neuropil was devoid of astrocyte membranes and synapses. Astrocyte membranes subsequently infiltrated the neuropil coordinately with synaptogenesis, and astrocyte ablation reduced synapse numbers by half, indicating that Drosophila astrocytes are pro-synaptogenic. Shortly after synapses formed in earnest, GAT was upregulated in astrocytes. Ablation or silencing of GABAergic neurons or disruption of metabotropic GABA receptor 1 and 2 (GABA(B)R1/2) signaling in astrocytes led to a decrease in astrocytic GAT. Notably, developmental depletion of astrocytic GABA(B)R1/2 signaling suppressed mechanosensory-induced seizure activity in mutants with hyperexcitable neurons. These data reveal that astrocytes actively modulate GAT expression via metabotropic GABA receptor signaling and highlight the importance of precise regulation of astrocytic GAT in modulation of seizure activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4176984PMC
http://dx.doi.org/10.1038/nn.3791DOI Listing

Publication Analysis

Top Keywords

gat levels
8
astrocyte membranes
8
metabotropic gaba
8
gaba receptor
8
gababr1/2 signaling
8
astrocytic gat
8
seizure activity
8
gat
6
astrocytes
5
activity-dependent regulation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!