Background: Non-invasive quantification of lower limb alignment using navigation technology is now possible throughout knee flexion owing to software developments. We report the precision and accuracy of a non-invasive system measuring mechanical alignment of the lower limb including coronal stress testing of the knee.
Methods: Twelve cadaveric limbs were tested with a commercial invasive navigation system against the non-invasive system. Coronal mechanical femorotibial (MFT) alignment was measured with no stress, then 15 Nm varus and valgus applied moments. Measurements were recorded at 10° intervals from extension to 90° flexion. At each flexion interval, coefficient of repeatability (CR) tested precision within each system, and limits of agreement (LOA) tested agreement between the two systems. Limits for CR & LOA were set at 3° based on requirements for surgical planning and evaluation.
Results: Precision was acceptable throughout flexion in all conditions of stress using the invasive system (CR ≤ 1.9°). Precision was acceptable using the non-invasive system from extension to 50° flexion (CR ≤ 2.4°), beyond which precision was unacceptable (> 3.4°). With no coronal stress applied, agreement remained acceptable from extension to 40° (LOA ≤ 2.4°), and when 15 Nm varus or valgus stress was applied agreement was acceptable from extension to 30° (LOA ≤ 2.9°). Higher angles of knee flexion had a negative impact on precision and accuracy.
Conclusion & Clinical Relevance: The non-invasive system provides reliable quantitative data in-vitro on coronal MFT alignment and laxity in the range relevant to assessment of collateral ligament injury, pre-operative planning of arthroplasty and flexion instability following arthroplasty. In-vivo validation should be performed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.knee.2014.07.008 | DOI Listing |
J Clin Med
December 2024
Rehabilitation Health Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11451, Saudi Arabia.
The role of autonomic nervous system (ANS) modulation in chronic neck pain remains elusive. Transcutaneous vagus nerve stimulation (t-VNS) provides a novel, non-invasive means of potentially mitigating chronic neck pain. This study aimed to assess the effects of ANS modulation on heart rate variability (HRV), pain perception, and neck disability.
View Article and Find Full Text PDFJ Clin Med
December 2024
Institut für Pathologie und Molekularpathologie, Universitätsspital Zürich, 8091 Zürich, Switzerland.
Uterine fibroids are benign monoclonal neoplasms of the myometrium, representing the most common female pelvic neoplasms globally. Treatments may be invasive, such as hysterectomy and myomectomy, non-invasive, such as medical therapy or focused ultrasound, or minimally invasive, such as transcervical radiofrequency ablation (TFA). To date, more than 12,000 women have been treated worldwide using TFA with the Sonata System.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Electrical and Computer Systems Engineering, Monash University, Melbourne, VIC 3800, Australia.
Conventional endoscopy is limited in its ability to examine the small bowel and perform long-term monitoring due to the risk of infection and tissue perforation. Wireless Capsule Endoscopy (WCE) is a painless and non-invasive method of examining the body's internal organs using a small camera that is swallowed like a pill. The existing active locomotion technologies do not have a practical localization system to control the capsule's movement within the body.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Institute of Smart Systems and Services, Pforzheim University, 75175 Pforzheim, Germany.
Multispectral imaging (MSI) enables non-invasive tissue differentiation based on spectral characteristics and has shown great potential as a tool for surgical guidance. However, adapting MSI to open surgeries is challenging. Systems that rely on light sources present in the operating room experience limitations due to frequent lighting changes, which distort the spectral data and require countermeasures such as disruptive recalibrations.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Biomedical Engineering, Lebanese International University, Beirut P.O. Box 146404, Lebanon.
The integration of liveness detection into biometric systems is crucial for countering spoofing attacks and enhancing security. This study investigates the efficacy of photoplethysmography (PPG) signals, which offer distinct advantages over traditional biometric techniques. PPG signals are non-invasive, inherently contain liveness information that is highly resistant to spoofing, and are cost-efficient, making them a superior alternative for biometric authentication.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!