Non-uniform displacements within the Achilles tendon observed during passive and eccentric loading.

J Biomech

Department of Biomedical Engineering, University of Wisconsin-Madison, WI, USA; Department of Mechanical Engineering, University of Wisconsin-Madison, WI, USA; Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, WI, USA.

Published: September 2014

The goal of this study was to investigate Achilles tendon tissue displacement patterns under passive and eccentric loading conditions. Nine healthy young adults were positioned prone on an examination table with their foot secured to a rotating footplate aligned with the ankle. Subjects cyclically rotated their ankle over a 25° range of motion at 0.5 Hz. An inertial load geared to the footplate induced eccentric plantarflexor contractions with dorsiflexion. Passive cyclic ankle motion was also performed over the same angular range of motion. An ultrasound transducer positioned over the distal Achilles tendon was used to collect radiofrequency (RF) images at 70 frames/s. Two-dimensional ultrasound elastographic analysis of the RF data was used to track tendon tissue displacements throughout the cyclic motion. Non-uniform tissue displacement patterns were observed in all trials, with the deeper portions of the Achilles tendon consistently exhibiting larger displacements than the superficial tendon (average of 0.9-2.6mm larger). Relative to the passive condition, eccentric loading consistently induced smaller tissue displacements in all tendon regions, except for the superficial tendon in a flexed knee posture. Significantly greater overall tissue displacement was observed in a more extended knee posture (30°) relative to a flexed knee posture (90°). These spatial- and posture-dependent displacement patterns suggest that the tendon undergoes non-uniform deformation under in vivo loading conditions. Such behavior could reflect relative sliding between the distinct tendon fascicles that arise from the gastrocnemius and soleus muscles.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4163107PMC
http://dx.doi.org/10.1016/j.jbiomech.2014.07.032DOI Listing

Publication Analysis

Top Keywords

achilles tendon
16
eccentric loading
12
tissue displacement
12
displacement patterns
12
knee posture
12
tendon
10
passive eccentric
8
tendon tissue
8
loading conditions
8
range motion
8

Similar Publications

Purpose: Eccentric calf training for Achilles tendinopathy shows variable success in athletes. Recent insights suggest a role for tendon fluid flow (exudation or redistribution) during exercise, which explains post-exercise reductions in thickness and increases in stiffness of the tendon. This fluid flow is thought to be beneficial as it may promote tendon remodeling, reduce intratendinous pressure, and alleviate pain.

View Article and Find Full Text PDF

Multimodal fuzzy logic-based gait evaluation system for assessing children with cerebral palsy.

Sci Rep

January 2025

Department of Biomedical Engineering, Faculty of Mechanical and Electrical Engineering, Damascus University, Damascus 86, Syria.

Gait analysis is crucial for identifying functional deviations from the normal gait cycle and is essential for the individualized treatment of motor disorders such as cerebral palsy (CP). The primary contribution of this study is the introduction of a multimodal fuzzy logic system-based gait index (FLS-GIS), designed to provide numerical scores for gait patterns in both healthy children and those with CP, before and after surgery. This study examines and evaluates the surgical outcomes in children with CP who have undergone Achilles tendon lengthening.

View Article and Find Full Text PDF

Background: An all-inside endoscopic flexor hallucis longus (FHL) tendon transfer is indicated for the treatment of chronic, full-thickness Achilles tendon defects. The aim of this procedure is to restore function of the gastrocnemius-soleus complex while avoiding the wound complications associated with open procedures.

Description: This procedure can be performed through 2 endoscopic portals, a posteromedial portal (the working portal) and a posterolateral portal (the visualization portal).

View Article and Find Full Text PDF

Subject-specific biomechanics influences tendon strains in patients with Achilles tendinopathy.

Sci Rep

January 2025

Human Movement Biomechanics Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium.

The treatment of Achilles tendinopathy is challenging, as 40% of patients do not respond to existing rehabilitation protocols. These protocols neglect individual Achilles tendon (AT) characteristics, which are crucial for healing of the tendon tissue. Although prior studies suggest an optimal strain for AT regeneration (6% tendon strains), it is unclear if current protocols meet this condition.

View Article and Find Full Text PDF

Background: Gadolinium-based contrast agents (GBCA) are widely used in magnetic resonance imaging (MRI) to enhance image contrast by interacting with water molecules, thus improving diagnostic capabilities. However, understanding the residual accumulation of GBCA in tissues after administration remains an area of active research. This highlights the need for advanced analytical techniques capable of investigating interactions between GBCAs and biopolymers, such as type I collagen, which are abundant in the body.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!