Minor histocompatibility antigens are highly immunogeneic polymorphic peptides playing crucial roles in the clinical outcome of HLA-identical allogeneic stem cell transplantation. Although the introduction of genome-wide association-based strategies significantly has accelerated the identification of minor histocompatibility antigens over the past years, more efficient, rapid and robust identification techniques are required for a better understanding of the immunobiology of minor histocompatibility antigens and for their optimal clinical application in the treatment of hematologic malignancies. To develop a strategy that can overcome the drawbacks of all earlier strategies, we now integrated our previously developed genetic correlation analysis methodology with the comprehensive genomic databases from the 1000 Genomes Project. We show that the data set of the 1000 Genomes Project is suitable to identify all of the previously known minor histocompatibility antigens. Moreover, we demonstrate the power of this novel approach by the identification of the new HLA-DP4 restricted minor histocompatibility antigen UTDP4-1, which despite extensive efforts could not be identified using any of the previously developed biochemical, molecular biological or genetic strategies. The 1000 Genomes Project-based identification of minor histocompatibility antigens thus represents a very convenient and robust method for the identification of new targets for cancer therapy after allogeneic stem cell transplantation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4258743 | PMC |
http://dx.doi.org/10.3324/haematol.2014.109801 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!