The optimization of experimental conditions for the chemiluminescent determination of peroxidase-mimicking DNAzyme (PMDNAzyme) formed at the interaction of hemin and its aptamer EAD2 was performed. The effect of concentrations of hydrogen peroxide and luminol, acidity of the substrate solution, and composition and concentration of the assay buffer was estimated. Under optimized conditions, a value of detection limit for the PMDNAzyme was 350 pM. A comparison of the conditions determined in this work with those reported previously showed that the optimization of the composition of the substrate solution improved the sensitivity of the chemiluminescent determination of the PMDNAzyme. The obtained results open up promising perspectives for using the proposed method to improve the sensitivity of PMDNAzyme-based assays.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ab.2014.07.018 | DOI Listing |
Nanoscale
January 2025
Physics and Chemistry of Nanostructures, Ghent University, 9000 Ghent, Belgium.
Many applications of nanocrystals rely on their use in light detection and emission. In recent years, nanocrystals with more relaxed carrier confinement, including so-called 'bulk' and 2D implementations, have made their stake. In such systems, the charge carriers generated after (photo-)excitation are spread over a semi-continuous density of states, behaviour controlled by the carrier temperature .
View Article and Find Full Text PDFLuminescence
January 2025
Department of Chemistry, College of Science, Jouf University, Sakaka, Aljouf, Saudi Arabia.
In the present study, a norfloxacin (NFX) fluorescent probe was tailored for the spectrofluorometric measurement of cefepime (CFP). The proposed approach measured the quenching effect of CFP on the fluorescence intensity of NFX in acetate buffer solution. The obtained results show that CFP strongly quenches the fluorescence of NFX in a static mechanism.
View Article and Find Full Text PDFLuminescence
January 2025
School of Chemical Engineering, Yeungnam University, Gyeongsan, Republic of Korea.
Crystal Violet (CV) is a vibrant and harmful dye known for its toxicity to aquatic life and potential carcinogenic effects on humans. This study explores the removal of CV through photocatalysis driven by visible light, as well as examining the antibacterial and antibiofilm characteristics of zinc oxide nanoparticles (ZnO NPs) synthesized from the aerial roots of Ficus benghalensis. Various characterization techniques were employed to confirm the optical properties, crystal lattices, and morphology of ZnO NPs.
View Article and Find Full Text PDFCureus
December 2024
Biochemistry, Meenakshi Medical College Hospital and Research Institute, Meenakshi Academy of Higher Education and Research, Kanchipuram, IND.
Background: Systemic inflammation, metabolic dysregulation, and changes in biochemical markers are closely associated with the progression of lung cancer. This study focuses on evaluating serum parathyroid hormone (PTH), C-reactive protein (CRP), lipid profile parameters, and interleukin-6 (IL-6) in relation to the stages of lung cancer, exploring their potential as biomarkers for assessing disease severity.
Methods: A total of 160 lung cancer patients were selected for a cross-sectional study and equally distributed into four clinical stages (Stages 1-4).
Biomed Opt Express
January 2025
School of Physical Science and Information Technology, Liaocheng University, Liaocheng 252059, China.
Accurate and efficient determination of malachite green (MG) in aquaculture is crucial for ensuring environment and food safety. Herein, we present a dual-response fluorescence probe based on an Ag/PMMA/Eu nanocomposite for the sensitive detection of MG with low concentration and single droplet. The luminescence properties of the Ag/PMMA/Eu nanocomposite and the fluorescence resonance energy transfer (FRET) effect between Eu and MG are significantly improved due to the localized surface plasmon resonance (LSPR) effect.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!