A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The genome-wide transcriptional response to neonatal hyperoxia identifies Ahr as a key regulator. | LitMetric

The genome-wide transcriptional response to neonatal hyperoxia identifies Ahr as a key regulator.

Am J Physiol Lung Cell Mol Physiol

Division of Neonatology, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York; Perinatal and Pediatric Origins of Disease Program, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York.

Published: October 2014

AI Article Synopsis

  • Premature infants on supplemental oxygen have a higher risk of developing bronchopulmonary dysplasia (BPD), and studies using neonatal rodent models exposed to high oxygen levels help explore the pathology of BPD.
  • Researchers conducted RNA sequencing on mouse lungs after a 10-day exposure to 100% oxygen, discovering 300 significantly affected genes and disrupted pathways related to oxidative stress and cellular signaling.
  • Key findings highlighted the Aryl Hydrocarbon Receptor (Ahr) as a critical regulator in the gene response to hyperoxia, influencing the expression of several important markers related to BPD.

Article Abstract

Premature infants requiring supplemental oxygen are at increased risk for developing bronchopulmonary dysplasia (BPD). Rodent models involving neonatal exposure to excessive oxygen concentrations (hyperoxia) have helped to identify mechanisms of BPD-associated pathology. Genome-wide assessments of the effects of hyperoxia in neonatal mouse lungs could identify novel BPD-related genes and pathways. Newborn C57BL/6 mice were exposed to 100% oxygen for 10 days, and whole lung tissue RNA was used for high-throughput, sequencing-based transcriptomic analysis (RNA-Seq). Significance Analysis of Microarrays and Ingenuity Pathway Analysis were used to identify genes and pathways affected. Expression patterns for selected genes were validated by qPCR. Mechanistic relationships between genes were further tested in cultured mouse lung epithelial cells. We identified 300 genes significantly and substantially affected following acute neonatal hyperoxia. Canonical pathways dysregulated in hyperoxia lungs included nuclear factor (erythryoid-derived-2)-like 2-mediated oxidative stress signaling, p53 signaling, eNOS signaling, and aryl hydrocarbon receptor (Ahr) pathways. Cluster analysis identified Ccnd1, Cdkn1a, and Ahr as critical regulatory nodes in the response to hyperoxia, with Ahr serving as the major effector node. A mechanistic role for Ahr was assessed in lung epithelial cells, and we confirmed its ability to regulate the expression of multiple hyperoxia markers, including Cdkn1a, Pdgfrb, and A2m. We conclude that a global assessment of gene regulation in the acute neonatal hyperoxia model of BPD-like pathology has identified Ahr as one driver of gene dysregulation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4280157PMC
http://dx.doi.org/10.1152/ajplung.00200.2014DOI Listing

Publication Analysis

Top Keywords

neonatal hyperoxia
12
hyperoxia
8
genes pathways
8
lung epithelial
8
epithelial cells
8
acute neonatal
8
ahr
6
neonatal
5
genes
5
genome-wide transcriptional
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!