First-principles studies on graphene-supported transition metal clusters.

J Chem Phys

Faculty of Physics and Center for Nanointegration (CENIDE), University of Duisburg-Essen, 47048 Duisburg, Germany.

Published: August 2014

Theoretical studies on the structure, stability, and magnetic properties of icosahedral TM13 (TM = Fe, Co, Ni) clusters, deposited on pristine (defect free) and defective graphene sheet as well as graphene flakes, have been carried out within a gradient corrected density functional framework. The defects considered in our study include a carbon vacancy for the graphene sheet and a five-membered and a seven-membered ring structures for graphene flakes (finite graphene chunks). It is observed that the presence of defect in the substrate has a profound influence on the electronic structure and magnetic properties of graphene-transition metal complexes, thereby increasing the binding strength of the TM cluster on to the graphene substrate. Among TM13 clusters, Co13 is absorbed relatively more strongly on pristine and defective graphene as compared to Fe13 and Ni13 clusters. The adsorbed clusters show reduced magnetic moment compared to the free clusters.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4893328DOI Listing

Publication Analysis

Top Keywords

magnetic properties
8
tm13 clusters
8
defective graphene
8
graphene sheet
8
graphene flakes
8
graphene
7
clusters
6
first-principles studies
4
studies graphene-supported
4
graphene-supported transition
4

Similar Publications

Herein, we synthesized a novel injectable porous magnetic hydrogel (MHG) at room temperature using carboxymethyl chitosan (CMCS), polydopamine (PDA), sodium alginate (SA), polyethyleneimine (PEI) and copper ferrite (CuFeO) as building blocks. The CMCS and SA as monomers provided good film-forming and anti-fouling properties for MHG. The PDA-coated CuFeO as a cross-linking agent improved the homogeneity, adsorption and electrocatalytic performance of MHG, but also generated a macroporous hydrogel structure which was beneficial for sensing applications.

View Article and Find Full Text PDF

Flavonoids are bioactive components in natural products, which possess anti-inflammatory, antibacterial, antioxidant, and cardiovascular protective properties. However, due to the complexity and low content of the components in these samples, developing rapid and sensitive methods for the isolation and extraction of flavonoids still remains a challenge in medical and food science. Herein, a 4-formylphenylboronic acid functionalized magnetic FeO nanomaterial (FeO@FPBA) was synthesized and applied as a sorbent of magnetic solid-phase extraction (MSPE) to covalently extract flavonoids from leaves of Lonicera japonica Thunb.

View Article and Find Full Text PDF

Azurin, a bacterial blue-copper protein, has garnered significant attention as a potential anticancer drug in recent years. Among twenty Pseudomonas aeruginosa isolates, we identified one isolate that demonstrated potent and remarkable azurin synthesis using the VITEK 2 system and 16S rRNA sequencing. The presence of the azurin gene was confirmed in the genomic DNA using specific oligonucleotide primers, and azurin expression was also detected in the synthesized cDNA, which revealed that the azurin expression is active.

View Article and Find Full Text PDF

The construction of thin film heterostructures has been a widely successful archetype for fabricating materials with emergent physical properties. This strategy is of particular importance for the design of multilayer magnetic architectures in which direct interfacial spin-spin interactions between magnetic phases in dissimilar layers lead to emergent and controllable magnetic behavior. However, crystallographic incommensurability and atomic-scale interfacial disorder can severely limit the types of materials amenable to this strategy, as well as the performance of these systems.

View Article and Find Full Text PDF

Impact of Gd, Pr, Yb, and Nd doping on the magnetic properties of Mg-ferrite nanoparticles.

J Mater Sci Mater Med

January 2025

Cyclotron Facility, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt.

This study aimed to synthesize MgFeLnO (where, Ln = Yb, Pr, Gd, and Nd) ferrite nanoparticles via the sol-gel process and investigate their structural, morphological, and magnetic properties for potential hyperthermia applications. X-ray diffraction analysis (XRD) confirmed the cubic spinel structure for all samples. Transmission electron microscopy (TEM) images revealed nanometer-scale dimensions and nearly spherical morphology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!