Background: Changes in skin connective tissues mediated by ultraviolet (UV) radiation have been suggested to cause the skin wrinkling normally associated with premature aging of the skin. Recent investigations have shown that peroxisome proliferator-activated receptor (PPAR) δ plays multiple biological roles in skin homeostasis.

Objective: We attempted to investigate whether PPARδ modulates elastin protein levels and secretion of matrix metalloproteinase (MMP)-2 in UVB-irradiated human dermal fibroblasts (HDFs) and mouse skin.

Methods: These studies were undertaken in primary HDFs or HR-1 hairless mice using Western blot analyses, small interfering (si)RNA-mediated gene silencing, and Fluorescence microscopy.

Results: In HDFs, UVB irradiation induced increased secretion of MMP-2 and reduced levels of elastin. Activation of PPARδ by GW501516, a ligand specific for PPARδ, markedly attenuated UVB-induced MMP-2 secretion with a concomitant increase in the level of elastin. These effects were reduced by the presence of siRNAs against PPARδ or treatment with GSK0660, a specific inhibitor of PPARδ. Furthermore, GW501516 elicited a dose- and time-dependent increase in the expression of elastin. Modulation of MMP-2 secretion and elastin levels by GW501516 was associated with a reduction in reactive oxygen species (ROS) production in HDFs exposed to UVB. Finally, in HR-1 hairless mice, administration of GW501516 significantly reduced UVB-induced MMP-2 expression with a concomitant increase in elastin levels, and these effects were significantly reduced by the presence of GSK0660.

Conclusion: Our results suggest that PPARδ-mediated modulation of MMP-2 secretion and elastin expression may contribute to the maintenance of skin integrity by inhibiting ROS generation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jdermsci.2014.07.011DOI Listing

Publication Analysis

Top Keywords

mmp-2 secretion
16
secretion elastin
12
peroxisome proliferator-activated
8
proliferator-activated receptor
8
elastin
8
elastin expression
8
human dermal
8
dermal fibroblasts
8
ultraviolet radiation
8
hr-1 hairless
8

Similar Publications

Plasma S100β is a predictor for pathology and cognitive decline in Alzheimer's disease.

Fluids Barriers CNS

January 2025

Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, 760 Press Ave, 124 HKRB, Lexington, KY, 40536-0679, USA.

Background: Blood-brain barrier dysfunction is one characteristic of Alzheimer's disease (AD) and is recognized as both a cause and consequence of the pathological cascade leading to cognitive decline. The goal of this study was to assess markers for barrier dysfunction in postmortem tissue samples from research participants who were either cognitively normal individuals (CNI) or diagnosed with AD at the time of autopsy and determine to what extent these markers are associated with AD neuropathologic changes (ADNC) and cognitive impairment.

Methods: We used postmortem brain tissue and plasma samples from 19 participants: 9 CNI and 10 AD dementia patients who had come to autopsy from the University of Kentucky AD Research Center (UK-ADRC) community-based cohort; all cases with dementia had confirmed severe ADNC.

View Article and Find Full Text PDF

Biomarkers.

Alzheimers Dement

December 2024

Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Gothenburg, Sweden.

Background: Blood-brain barrier (BBB) integrity is crucial for brain homeostasis and maintenance. This is a pilot study to investigate cerebrospinal fluid (CSF) levels of several proteins implicated in BBB integrity, such as aquaporin-4 (AQP4), platelet-derived growth factor (PDGFRβ), human major facilitator superfamily domain containing protein 2A (MFSD2A), matrix metalloproteinase (MMP)-9, Matrix metalloproteinase (MMP)-2, and Fibrinogen, for assessing BBB integrity.

Method: CSF samples were collected from 100 participants (36 [36%] female and 64 males [64%]; mean [SD] age, 73,34 [9,05] years).

View Article and Find Full Text PDF

Background: Cardiovascular diseases constitute one of the leading causes of morbidity and mortality worldwide. Herbal medicines represent viable alternatives to the synthetic drugs currently employed in the control of hypertension. This study aimed to isolate and identify the chemical markers of and to investigate the antihypertensive and anti-matrix metalloproteinase (MMP2) activities of an aqueous extract of the leaves.

View Article and Find Full Text PDF

Could Selected Adipokines/Cytokines Serve as Markers of Adipose Tissue Dysfunction?

Int J Mol Sci

December 2024

Department of Biostatistics and Medical Informatics, Medical University of Bialystok, ul. Szpitalna 37, 15-295 Bialystok, Poland.

Elevated levels of pro-inflammatory adipokines and cytokines increase the risk of developing metabolic disorders and diseases. The aim of this study was to conduct a comparative analysis of selected adipokines/cytokines in the blood serum of adults with obesity and normal body weight. The study also evaluated the correlation of these adipokines/cytokines with selected biochemical blood parameters.

View Article and Find Full Text PDF

The Complex Role of Matrix Metalloproteinase-2 (MMP-2) in Health and Disease.

Int J Mol Sci

December 2024

Pittsburgh Heart, Lung and Blood Vascular Medicine Institute (VMI), University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA.

Matrix metalloproteinase-2 (MMP-2), a zinc-dependent enzyme, plays a critical role in the degradation and remodeling of the extracellular matrix (ECM). As a member of the gelatinase subgroup of matrix metalloproteinases, MMP-2 is involved in a variety of physiological processes, including tissue repair, wound healing, angiogenesis, and embryogenesis. It is primarily responsible for the degradation of type IV and V collagen, fibronectin, laminin, and elastin, which are essential components of the ECM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!