A cyclodextrin-containing pH-responsive star polymer, with cyclodextrin polymer and pH-sensitive poly(2-(dimethylamino)ethyl methacrylate) as the core and poly(ethylene glycol) as the arm, was evaluated as drug carriers in vitro and in vivo. Doxorubicin (DOX) was successfully loaded into the star polymer to form nanoparticles (DOX-NPs) via host-guest interaction. The physicochemical properties such as drug loading content, size, morphology, stability and physical state of DOX-NPs were characterized in detail by (1)H NMR, DLS, SEM and DSC. Uniform and stable DOX-NPs with high encapsulation efficiency of 77.1% were obtained, and they also exhibited sustainable and controllable release of DOX in vitro. The cellular uptake of DOX-NPs was in concentration-, time- and cell type-dependent manners, and the cytotoxicity of DOX-NPs was significantly high toward HeLa and HepG2 cancer cells. Furthermore, in vivo anti-tumor experiment on BALB/c mice bearing cervical tumor showed that DOX-NPs could effectively suppress the growth of tumor without significant side effect. These findings suggest that the cyclodextrin-containing pH-responsive star polymer has a promising potential in developing novel drug delivery system for cancer therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijpharm.2014.08.018 | DOI Listing |
J Nanobiotechnology
January 2025
Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China.
The escalating hazards posed by bacterial infections underscore the imperative for pioneering advancements in next-generation antibacterial modalities and treatments. Present therapeutic methodologies are frequently impeded by the constraints of insufficient biofilm infiltration and the absence of precision in pathogen-specific targeting. In this current study, we have used chlorin e6 (Ce6), zeolitic imidazolate framework-8 (ZIF-8), polydopamine (PDA), and UBI peptide to formulate an innovative nanosystem meticulously engineered to confront bacterial infections and effectually dismantle biofilm architectures through the concerted mechanism of photodynamic therapy (PDT)/photothermal therapy (PTT) therapies, including in-depth research, especially for oral bacteria and oral biofilm.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Singapore 627833, Republic of Singapore.
Polymeric materials are ubiquitous in modern life. Similar to many other technological applications, polymer materials are essential in advancing the green hydrogen economy, offering solutions for hydrogen production, storage, transport, and utilization. In production, polymeric proton exchange membranes in water electrolysers enable efficient green hydrogen generation using renewable energy.
View Article and Find Full Text PDFNat Commun
January 2025
School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore.
Electrocatalytic gas-evolving reactions often result in bubble-covered surfaces, impeding the mass transfer to active sites. Such an issue will be worsened in practical high-current-density conditions and can cause sudden cell failure. Herein, we develop an on-chip microcell-based total-internal-reflection-fluorescence-microscopy to enable operando imaging of bubbles at sub-50 nm and dynamic probing of their nucleation during hydrogen evolution reaction.
View Article and Find Full Text PDFMacromolecules
January 2025
Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77840, United States.
This work explored solution properties of linear and star poly(methacrylic acids) with four, six, and eight arms (PMAA, 4PMAA, PMAA, and 8PMAA, respectively) of matched molecular weights in a wide range of pH, salt, and polymer concentrations. Experimental measurements of self-diffusion were performed by fluorescence correlation spectroscopy (FCS), and the results were interpreted using the scaling theory of polyelectrolyte solutions. While all PMAAs were pH sensitive and showed an increase in hydrodynamic radius ( ) with pH in the dilute regime, the of star polymers (measured at basic pH values) was significantly smaller for the star polyacids due to their more compact structure.
View Article and Find Full Text PDFSTAR Protoc
January 2025
Department of Physics, National Institute of Technology, Warangal 506004, India. Electronic address:
Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) is an open-source, powerful simulator with a customizable platform for extensive Langevin dynamics simulations. Here, we present a protocol for using LAMMPS to develop coarse-grained models of polymeric systems with macromolecular crowding, an integral part of any soft matter or biophysical system. We describe steps for installing software, using LAMMPS basic commands and code, and translocating polymers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!