Crossmodal integration of sensory signals can improve perception and behavior but requires the signals to occur close in time. Differences in propagation and processing speeds make this difficult. Temporal recalibration is a useful 're-alignment' process by which the point of subjective synchrony is temporally realigned towards an adapted asynchrony. A recent study by Van der Burg et al. (2013). J. Neurosci. 33, 14633-14637 showed temporal recalibration can occur rapidly following a single exposure to a brief audiovisual asynchrony. Using a similar procedure, this study confirms their rapid recalibration effect and shows that it occurs even when the single exposure differs in its auditory and visual features from the test stimulus. Using the same procedure in a unimodal context showed that rapid recalibration does not occur in audition following exposure to asynchronous tones of different frequencies, nor in vision following asynchronous lines differing in colour and orientation. This pattern of results suggests that rapid recalibration is in essence an inter-sensory temporal process. It serves to realign asynchronies between modalities with no selectivity for feature identity and does not operate within modalities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.brainres.2014.08.028 | DOI Listing |
Conscious Cogn
December 2024
Department of Business and Marketing, Faculty of Commerce, Kyushu Sangyo University, 3-1 Matsukadai 2-Chome, Higashi-ku, Fukuoka 813-8503, Japan. Electronic address:
Biosensors (Basel)
December 2024
Optoelectronics and Measurement Techniques Research Unit, University of Oulu, 90570 Oulu, Finland.
There is an ongoing search for a reliable and continuous method of noninvasive blood pressure (BP) tracking. In this study, we investigate the feasibility of utilizing seismocardiogram (SCG) signals, i.e.
View Article and Find Full Text PDFMed Image Anal
February 2025
Department of Computer and Data Science and Department of Biomedical Engineering, Case Western Reserve University, USA.
CNN-based object detection models that strike a balance between performance and speed have been gradually used in polyp detection tasks. Nevertheless, accurately locating polyps within complex colonoscopy video scenes remains challenging since existing methods ignore two key issues: intra-sequence distribution heterogeneity and precision-confidence discrepancy. To address these challenges, we propose a novel Temporal-Spatial self-correction detector (TSdetector), which first integrates temporal-level consistency learning and spatial-level reliability learning to detect objects continuously.
View Article and Find Full Text PDFbioRxiv
October 2024
Department of Psychology, New York University.
Cross-modal temporal recalibration guarantees stable temporal perception across everchanging environments. Yet, the mechanisms of cross-modal temporal recalibration remain unknown. Here, we conducted an experiment to measure how participants' temporal perception was affected by exposure to audiovisual stimuli with consistent temporal delays.
View Article and Find Full Text PDFmedRxiv
September 2024
Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA.
Importance: Declining mortality in the field of pediatric critical care medicine has shifted practicing clinicians' attention to preserving patients' neurodevelopmental potential as a main objective. Earlier identification of critically ill children at risk for incurring neurologic morbidity would facilitate heightened surveillance that could lead to timelier clinical detection, earlier interventions, and preserved neurodevelopmental trajectory.
Objective: Develop machine-learning models for identifying acquired neurologic morbidity while hospitalized with critical illness and assess correlation with contemporary serum-based, brain injury-derived biomarkers.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!