Diabetes mellitus (DM) is considered a risk factor for the development of Alzheimer disease (AD); however, how DM favors evolution of AD is still insufficiently understood. Hyperglycemia in DM is associated to an increase in mitochondrial reactive oxygen species (ROS) generation, as well as damage of hippocampal cells, reflected by changes in morphological and mitochondrial functionality. Similar mitochondrial damage has been observed when amyloid beta (Aβ) accumulates in the brain of AD patients. In DM, the excess of glucose in the brain induces higher activity of the hexosamine biosynthesis pathway (HBP), it synthesizes UDP-N-acetylglucosamine (UDP-GlcNAc), which is used by O-linked N-acetylglucosamine transferase (OGT) to catalyze O-GlcNAcylation of numerous proteins. Although O-GlcNAcylation plays an important role in maintaining structure and cellular functionality, chronic activity of this pathway has been associated with insulin resistance and hyperglycemia-induced glucose toxicity. Three different forms of OGT are known: nucleocytoplasmic (ncOGT), short (sOGT), and mitochondrial (mOGT). Previous reports showed that overexpression of ncOGT is not toxic to the cell; in contrast, overexpression of mOGT is associated with cellular apoptosis. In this work, we suggest that hyperglycemia in the diabetic patient could induce greater expression and activity of mOGT, modifying the structure and functionality of mitochondria in hippocampal cells, accelerating neuronal damage, and favoring the start of AD. In consequence, mOGT activity could be a key point for AD development in patients with DM.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.exger.2014.08.008DOI Listing

Publication Analysis

Top Keywords

o-linked n-acetylglucosamine
8
n-acetylglucosamine transferase
8
diabetic patient
8
alzheimer disease
8
hippocampal cells
8
mitochondrial
5
mogt
5
mitochondrial o-linked
4
transferase mogt
4
mogt diabetic
4

Similar Publications

O-linked N-acetylglucosamine transferase (OGT)-catalyzed O-linked N-acetylglucosamine glycosylation (O-GlcNAcylation) is closely associated with diabetes progression. This study aims to investigate the mechanism of OGT in regulating endothelial dysfunction in gestational diabetes mellitus (GDM). Expressions of OGT, O-linked N-acetylglucosamine (O-GlcNAc), enhancer of zeste homolog 2 (EZH2), and HEK27me3 in human umbilical vein endothelial cells (HUVECs) and GDM-derived HUVECs (GDM-HUVECs) were assessed by western blot.

View Article and Find Full Text PDF

With the ongoing rise in the incidence of inflammatory bowel disease (IBD), its extraintestinal manifestations have garnered significant attention. IBD-related arthritis is notable for its insidious onset and unpredictability, presenting considerable challenges for clinical diagnosis and management. Factors such as gut microbiota, plasma proteins, inflammatory proteins, and biomarkers found in blood and urine may be closely associated with IBD-related arthritis.

View Article and Find Full Text PDF

Protein glycosylation, a vital post-translational modification, is pivotal in various biological processes and disease pathogenesis. Computational approaches, including protein language models and machine learning algorithms, have emerged as valuable tools for predicting O-GlcNAc sites, reducing experimental costs, and enhancing efficiency. However, the literature has not reported the prediction of O-GlcNAc sites through the evolutionary scale model (ESM).

View Article and Find Full Text PDF

Altered levels of intracellular protein glycosylation with O-linked β-N-acetylglucosamine (O-GlcNAc) have emerged as being involved in various cancers and neurodegenerative diseases. OGA inhibitors have proven critically useful as tools to help understand the roles of O-GlcNAc, yet accessing large quantities of inhibitors necessary for many animal studies remains a challenge. Herein is described a scalable method to produce Thiamet-G, a potent, selective, and widely used brain-permeable OGA inhibitor.

View Article and Find Full Text PDF

JUNB O-GlcNAcylation-Mediated Promoter Accessibility of Metabolic Genes Modulates Distinct Epithelial Lineage in Pulmonary Fibrosis.

Adv Sci (Weinh)

December 2024

Lung Repair & Regeneration Department, Boehringer Ingelheim Pharma GmbH & Co. KG, 88400, Biberach, Germany.

Idiopathic pulmonary fibrosis (IPF) is a lethal disease with substantial unmet medical needs. While aberrant epithelial remodeling is a key factor in IPF progression, the molecular mechanisms behind this process remain elusive. Harnessing a 3D patient-derived organoid model and multi-omics approach, the first inventory of the connection between metabolic alteration, chromatin accessibility, and transcriptional regulation in IPF aberrant epithelial remodeling is provided.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!