Soluble Amyloid-β oligomers (Aβo) can trigger Alzheimer disease (AD) pathophysiology by binding to cell surface cellular prion protein (PrP(C)). PrP(C) interacts physically with metabotropic glutamate receptor 5 (mGluR5), and this interaction controls the transmission of neurotoxic signals to intracellular substrates. Because the interruption of the signal transduction from PrP(C) to mGluR5 has therapeutic potential for AD, we developed assays to explore the effect of endogenous ligands, agonists/antagonists, and antibodies on the interaction between PrP(C) and mGluR5 in cell lines and mouse brain. We show that the PrP(C) segment of amino acids 91-153 mediates the interaction with mGluR5. Agonists of mGluR5 increase the mGluR5-PrP(C) interaction, whereas mGluR5 antagonists suppress protein association. Synthetic Aβo promotes the protein interaction in mouse brain and transfected HEK-293 cell membrane preparations. The interaction of PrP(C) and mGluR5 is enhanced dramatically in the brains of familial AD transgenic model mice. In brain homogenates with Aβo, the interaction of PrP(C) and mGluR5 is reversed by mGluR5-directed antagonists or antibodies directed against the PrP(C) segment of amino acids 91-153. Silent allosteric modulators of mGluR5 do not alter Glu or basal mGluR5 activity, but they disrupt the Aβo-induced interaction of mGluR5 with PrP(C). The assays described here have the potential to identify and develop new compounds that inhibit the interaction of PrP(C) and mGluR5, which plays a pivotal role in the pathogenesis of Alzheimer disease by transmitting the signal from extracellular Aβo into the cytosol.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4192497 | PMC |
http://dx.doi.org/10.1074/jbc.M114.584342 | DOI Listing |
J Am Chem Soc
October 2024
Departments of Neuroscience and Neurology, Yale School of Medicine, 100 College Street, New Haven, Connecticut 06510, United States.
Liquid-liquid phase separation (LLPS) of intrinsically disordered proteins has been associated with neurodegenerative diseases, although direct mechanisms are poorly defined. Here, we report on a maturation process for the cellular prion protein (PrP) that involves a conformational change after LLPS and is regulated by mutations and poly(4-styrenesulfonic acid--maleic acid) (PSCMA), a molecule that has been reported to rescue Alzheimer's disease-related cognitive deficits by antagonizing the interaction between PrP and amyloid-β oligomers (Aβo). We show that PSCMA can induce reentrant LLPS of PrP and lower the saturation concentration () of PrP by 100-fold.
View Article and Find Full Text PDFAlzheimers Res Ther
November 2023
Departments of Neuroscience and Neurology, Yale School of Medicine, New Haven, CT, USA.
Background: Progression of Alzheimer's disease leads to synapse loss, neural network dysfunction and cognitive failure. Accumulation of protein aggregates and brain immune activation have triggering roles in synaptic failure but the neuronal mechanisms underlying synapse loss are unclear. On the neuronal surface, cellular prion protein (PrP) is known to be a high-affinity binding site for Amyloid-β oligomers (Aβo).
View Article and Find Full Text PDFJ Alzheimers Dis
February 2023
Key Laboratory of State Administration of Traditional Chinese Medicine of China, Department of Pathophysiology, School of Medicine, Institute of Brain Research, Jinan University, Guangzhou, P. R. China.
Background: The metabotropic glutamate receptor 5 (mGluR5) is widely expressed in postsynaptic neurons and plays a vital role in the synaptic plasticity of the central nervous system. mGluR5 is a coreceptor for amyloid-β (Aβ) oligomer, and downregulation or pharmacological blockade of mGluR5 presents the therapeutic potential of Alzheimer's disease (AD). However, the abnormality of mGluR5 in the pathogenesis of AD and its mechanism of pathology is not clear.
View Article and Find Full Text PDFNeurobiol Dis
October 2022
Department of Pathology, University of California San Diego, La Jolla, CA, USA; Department of Medicine, University of California San Diego, La Jolla, CA, USA; Department of Pathology, Microbiology and Immunology, University of California Davis, Davis, CA, USA. Electronic address:
Int J Mol Sci
June 2022
Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy.
We propose a model to explain the pathogenesis of Alzheimer's disease (AD) based on the theory that any disease affecting a healthy organism originates from a bistable feedback loop that shifts the system from a physiological to a pathological condition. We focused on the known double inhibitory loop involving the cellular prion protein (PrPC) and the enzyme BACE1 that produces amyloid-beta (Aβ) peptides. BACE1 is inhibited by PrPC, but its inhibitory activity is lost when PrPC binds to Aβ oligomers (Aβo).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!