Background: Demographic change will lead to a diminishing care workforce faced with rising numbers of older persons in need of care, suggesting meaningful use of health-enabling technologies, and home monitoring in particular, to contribute to supporting both the carers and the persons in need.

Objectives: We present and discuss the GAL-NATARS study design along with first results regarding technical feasibility of long-term home monitoring and acceptance of different sensor modalities.

Methods: Fourteen geriatric participants with mobility-impairing fractures were recruited in three geriatric clinics. Following inpatient geriatric rehabilitation, their homes were equipped with ambient sensor components for three months. Additionally, a wearable accelerometer was employed. Technical feasibility was assessed by system and component downtimes, technology acceptance by face-to-face interviews.

Results: The overall system downtime was 6%, effected by two single events, but not by software failures. Technology acceptance was rated very high by all participants at the end of the monitoring periods, and no interference with their social lives was reported.

Discussion And Conclusions: Home-monitoring technologies were well-accepted by our participants. The information content of the data still needs to be evaluated with regard to clinical outcome parameters as well as the effect on the quality of life before recommending large-scale implementations.

Download full-text PDF

Source
http://dx.doi.org/10.3109/17538157.2014.931852DOI Listing

Publication Analysis

Top Keywords

acceptance sensor
8
gal-natars study
8
technical feasibility
8
technology acceptance
8
multimodal activity
4
monitoring
4
activity monitoring
4
monitoring rehabilitation
4
geriatric
4
rehabilitation geriatric
4

Similar Publications

Using low-cost sensors to assess common air pollution sources across multiple residences.

Sci Rep

January 2025

School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.

The rapid development of low-cost sensors provides the opportunity to greatly advance the scope and extent of monitoring of indoor air pollution. In this study, calibrated particle matter (PM) sensors and a non-negative matrix factorisation (NMF) source apportionment technique are used to investigate PM concentrations and source contributions across three households in an urban residential area. The NMF is applied to combined data from all houses to generate source profiles that can be used to understand how PM source characteristics are similar or differ between different households in the same urban area.

View Article and Find Full Text PDF

Background And Aims: Physical activity is a key component of secondary stroke prevention. Mobile health (mHealth) interventions show promise for enhancing post-stroke physical activity, but most studies have combined mHealth with onsite services. This study evaluated the feasibility and acceptability of a fully digitalised mHealth intervention for physical activity among individuals post stroke or transient ischemic attack (TIA) in Sweden.

View Article and Find Full Text PDF

Background: The buildup of methylparaben (MP), a broad-spectrum antimicrobial preservative with endocrine-disrupting properties, in environmental sources, especially aquatic systems, has become a significant concern due to its adverse health effects, including allergic reactions, promoting the risk of developing cancer, and inducing reproductive disorders. Hence, introducing inexpensive and easy-to-use monitoring devices for rapid, selective, and sensitive detection and quantification of MP is highly desirable. In this context, electrochemical platforms have proven to be attractive options due to their remarkable features, such as ease of fabrication and use, short response time, and acceptable sensitivity, accuracy, and selectivity.

View Article and Find Full Text PDF

A signal amplifying MOF-based probe:on-site and ultrasensitive dual-channel portable detection of Hg in groundwater through a fluorimetrically and RGB-based sensing assay.

Talanta

January 2025

State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou, Gansu, 730000, People's Republic of China. Electronic address:

Mercury (II) ions (Hg) are a significant source of heavy metal contamination in groundwater, posing a serious threat to human health and the environment. Therefore, there is an urgent need for the development of a new detection technique with high sensitivity for monitoring Hg in contaminated groundwater. Here, we developed a signal amplifying MOF-based probe (NXS@ZIF-8) for on-site and ultrasensitive dual-channel portable detection of Hg in groundwater.

View Article and Find Full Text PDF

Peak Weight Acceptance, Mid Stance Trough, and Peak Push-Off Force Symmetry Are Decreased in Older Adults Compared With Young Adults.

J Appl Biomech

January 2025

Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA.

Gait abnormalities affect an individual's ability to navigate the world independently and occur in 10% of older adults. Examining age-related gait symmetry in nonlaboratory environments is necessary for understanding mobility limitations in older adults. This study examined gait symmetry differences between older and younger adults using in-shoe force sensors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!