Bacteria of the marine Roseobacter clade are characterised by their ability to utilise a wide range of organic and inorganic compounds to support growth. Trimethylamine (TMA) and trimethylamine N-oxide (TMAO) are methylated amines (MA) and form part of the dissolved organic nitrogen pool, the second largest source of nitrogen after N2 gas, in the oceans. We investigated if the marine heterotrophic bacterium, Ruegeria pomeroyi DSS-3, could utilise TMA and TMAO as a supplementary energy source and whether this trait had any beneficial effect on growth. In R. pomeroyi, catabolism of TMA and TMAO resulted in the production of intracellular ATP which in turn helped to enhance growth rate and growth yield as well as enhancing cell survival during prolonged energy starvation. Furthermore, the simultaneous use of two different exogenous energy sources led to a greater enhancement of chemoorganoheterotrophic growth. The use of TMA and TMAO primarily as an energy source resulted in the remineralisation of nitrogen in the form of ammonium, which could cross feed into another bacterium. This study provides greater insight into the microbial metabolism of MAs in the marine environment and how it may affect both nutrient flow within marine surface waters and the flux of these climatically important compounds into the atmosphere.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4331573 | PMC |
http://dx.doi.org/10.1038/ismej.2014.149 | DOI Listing |
Nutrients
January 2025
Department of Nutrition, University of Applied Sciences Münster (FH), 48149 Münster, Germany.
Rationale: The dietary components choline, betaine, and L-carnitine are converted by intestinal microbiota into the molecule trimethylamine (TMA). In the human liver, hepatic flavin-containing monooxygenase 3 oxidizes TMA to trimethylamine-N-oxide (TMAO). TMAO is considered a candidate marker for the risk of cardiovascular disease.
View Article and Find Full Text PDFAppl Clin Genet
December 2024
Medical Genomics Research Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia.
Background: Trimethylaminuria (TMAU) is a rare recessive genetic disorder with limited global prevalence. To date, there have been no official reports of TMAU cases documented in Saudi Arabia.
Purpose: In this study, we developed a liquid chromatography-mass spectrometry (LC-MS) method for the analysis of trimethylamine (TMA) and Trimethylamine N-Oxide (TMAO) in urine and plasma samples for the first reported case of TMAU in Saudi Arabia.
Gut Microbes
December 2025
Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.
Gut microbial metabolism of L-carnitine, which leads to the production of detrimental trimethylamine N-oxide (TMAO), offers a plausible link between red meat consumption and cardiovascular risks. Several microbial genes, including , the operon, and the recently identified gene cluster, have been implicated in the conversion of dietary L-carnitine into TMA(O). However, the key microbial genes and associated gut microbes involved in this pathway have not been fully explored.
View Article and Find Full Text PDFClin Nutr
January 2025
Division of Nephrology, Department of Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, and School of Medicine, Tzu Chi University, Hualien, Taiwan. Electronic address:
Background: Trimethylamine N-oxide (TMAO) is a gut microbial metabolite derived from dietary l-carnitine and choline. High plasma TMAO levels are associated with cardiovascular disease and overall mortality, but little is known about the associations of TMAO and related metabolites with the risk of kidney function decline among patients with chronic kidney disease (CKD).
Methods: We prospectively followed 152 nondialysis patients with CKD stages 3-5 and measured plasma TMAO and related metabolites (trimethylamine [TMA], choline, carnitine, and γ-butyrobetaine) via liquid chromatography‒mass spectrometry.
Probiotics Antimicrob Proteins
December 2024
Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, Qingdao, 266100, Shandong, China.
Atherosclerosis is a major cause of cardiovascular disease (CVD). The trimethylamine (TMA)-trimethylamine N-oxide (TMAO) pathway is a key crossover pathway highly associated with diet, gut microbiome, and atherosclerosis. The Bifidobacterium animalis subsp.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!