Metal nanotubes and nanowires with rhombohedral cross-section electrolessly deposited in mica templates.

Langmuir

TU Darmstadt , Department of Materials and Geoscience, Alarich-Weiss-Straße 2, 64287, Darmstadt, Germany.

Published: September 2014

Electroless plating is a facile wet-chemical process for the creation of metal thin films on arbitrary substrates, which can be used to produce intricate nanomaterials. In this study, we demonstrate how nanotubes and nanowires can be electrolessly deposited in the rhombohedral pores of ion-track etched muscovite mica templates. Mutual optimization of the activation and plating reactions proved to be essential for the fabrication of well-defined nanostructures of an aspect ratio (length-to-diameter) of up to approximately 70. By repeating the activation procedure utilizing the redox couple Sn(II) and Ag(I), a high density of Ag nanoparticle seeds could be deposited on the template surface, which was required to initiate metal film nucleation with nanoscale homogeneity. Furthermore, it was necessary to adapt the plating reaction to ensure sufficient diffusion of the reagents into the depth of the template pores. To prove the flexibility of the process and to evaluate the effect of the intrinsic film morphology on the shape of the resulting nanostructures, three different plating reactions were applied (Ag, Au, Pt). If the size of the deposited metal particles approached the dimension of the template pores, only wire-like structures of moderate shape conformity were obtained. Electroless plating protocols which yield homogeneous deposits consisting of small nanoparticles allowed exact replication of the pore shape. Under consideration of the above-mentioned requirements, electroless plating displays an effective and versatile route toward the fabrication of parallel arrays of angular metal nanotubes and nanowires in the chemically and thermally robust mica templates. By simply immersing the templates in aqueous plating solutions for an appropriate time, well-defined metal nanomaterials for application in, for example, plasmonics, catalysis, or molecular separation are obtained.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la5012956DOI Listing

Publication Analysis

Top Keywords

nanotubes nanowires
12
mica templates
12
electroless plating
12
metal nanotubes
8
electrolessly deposited
8
plating reactions
8
template pores
8
plating
7
metal
6
nanowires rhombohedral
4

Similar Publications

New materials for electrical conductors, energy storage, thermal management, and structural elements are required for increased electrification and non-fossil fuel use in transport. Appropriately assembled as macrostructures, nanomaterials can fill these gaps. Here, we critically review the materials science challenges to bridge the scale between the nanomaterials and the large-area components required for applications.

View Article and Find Full Text PDF

Hydrogen Production and Li-Ion Battery Performance with MoS-SiNWs-SWNTs@ZnONPs Nanocomposites.

Nanomaterials (Basel)

November 2024

Instituto de Ciencia de Materiales Nicolás Cabrera, Universidad Autónoma de Madrid, 28049 Madrid, Spain.

This study explores the hydrogen generation potential via water-splitting reactions under UV-vis radiation by using a synergistic assembly of ZnO nanoparticles integrated with MoS, single-walled carbon nanotubes (SWNTs), and crystalline silicon nanowires (SiNWs) to create the MoS-SiNWs-SWNTs@ZnONPs nanocomposites. A comparative analysis of MoS synthesized through chemical and physical exfoliation methods revealed that the chemically exfoliated MoS exhibited superior performance, thereby being selected for all subsequent measurements. The nanostructured materials demonstrated exceptional surface characteristics, with specific surface areas exceeding 300 m g.

View Article and Find Full Text PDF

Cadmium sulfide is widely employed in environmental catalysis due to its excellent catalytic behaviors. However, the inherent toxicity and leaching risk of CdS-based catalyst presents significant challenges for practical applications. This study explored the incorporation of CdS nanowires on the nitrogen-doped multi-wall carbon tubes (N-MWCNTs) substrate to minimize the leaching rate and mitigate the bio-toxicity by regulating the electron transfer process.

View Article and Find Full Text PDF

With the development of hydrogen energy, there has been increasing attention toward fuel cells and water electrolysis. Among them, the zero-gap membrane electrode assembly (MEA) serves as an important triple-phase reaction site that determines the performance and efficiency of the reaction system. The development of efficient and durable MEAs plays a crucial role in the development of hydrogen energy.

View Article and Find Full Text PDF

Nanomaterials for spin-based quantum information.

Nanoscale

January 2025

Department of Chemistry, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay Rd., Kowloon, Hong Kong (SAR) 999077, China.

Quantum information science has garnered significant attention due to its potential in solving problems that are beyond the capabilities of classical computations based on integrated circuits. At the heart of quantum information science is the quantum bit or qubit, which is used to carry information. Achieving large-scale and high-fidelity quantum bits requires the optimization of materials with trap-free characteristics and long coherence times.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!