Inhibition of c-Abl kinase activity renders cancer cells highly sensitive to mitoxantrone.

PLoS One

Department of Obstetrics and Gynecology and Joint Clinical Biochemistry Laboratory of Turku University Hospital, Medicity Research Laboratory, University of Turku, Turku, Finland.

Published: May 2015

Although c-Abl has increasingly emerged as a key player in the DNA damage response, its role in this context is far from clear. We studied the effect of inhibition of c-Abl kinase activity by imatinib with chemotherapy drugs and found a striking difference in cell survival after combined mitoxantrone (MX) and imatinib treatment compared to a panel of other chemotherapy drugs. The combinatory treatment induced apoptosis in HeLa cells and other cancer cell lines but not in primary fibroblasts. The difference in MX and doxorubicin was related to significant augmentation of DNA damage. Transcriptionally active p53 accumulated in cells in which human papillomavirus E6 normally degrades p53. The combination treatment resulted in caspase activation and apoptosis, but this effect did not depend on either p53 or p73 activity. Despite increased p53 activity, the cells arrested in G2 phase became defective in this checkpoint, allowing cell cycle progression. The effect after MX treatment depended partially on c-Abl: Short interfering RNA knockdown of c-Abl rendered HeLa cells less sensitive to MX. The effect of imatinib was decreased by c-Abl siRNA suggesting a role for catalytically inactive c-Abl in the death cascade. These findings indicate that MX has a unique cytotoxic effect when the kinase activity of c-Abl is inhibited. The treatment results in increased DNA damage and c-Abl-dependent apoptosis, which may offer new possibilities for potentiation of cancer chemotherapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4141754PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0105526PLOS

Publication Analysis

Top Keywords

kinase activity
12
dna damage
12
inhibition c-abl
8
c-abl kinase
8
chemotherapy drugs
8
hela cells
8
c-abl
7
activity
5
cells
5
treatment
5

Similar Publications

CBX2 suppresses interferon signaling to diminish tumor immunogenicity via a noncanonical corepressor complex.

Proc Natl Acad Sci U S A

February 2025

State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510050, China.

Chromobox 2 (CBX2), a crucial component of the polycomb repressive complex (PRC), has been implicated in the development of various human cancers. However, its role in the regulation of tumor immunogenicity and immune evasion remains inadequately understood. In this study, we found that ablation of CBX2 led to tumor growth inhibition, activation of the tumor immune microenvironment, and enhanced therapeutic efficacy of anti-PD1 or adoptive T cell therapies by using murine syngeneic tumor models.

View Article and Find Full Text PDF

The mammalian Hippo kinases, MST1 and MST2, regulate organ development and suppress tumor formation by balancing cell proliferation and death. In macrophages, inflammasomes detect molecular patterns from invading pathogens or damaged host cells and trigger programmed cell death. In addition to lytic pyroptosis, the signatures associated with apoptosis are induced by inflammasome activation, but how the inflammasomes coordinate different cell death processes remains unclear.

View Article and Find Full Text PDF

Background: RNA polymerase-binding protein A (RbpA) is an actinomycetes-specific protein crucial for the growth and survival of the pathogen Mycobacterium tuberculosis. Its role is essential and influences the transcription and antibiotic responses. However, the regulatory mechanisms underlying RbpA-mediated transcription remain unknown.

View Article and Find Full Text PDF

DNA methylation is known to be associated with cataracts. In this study, we used a mouse model and performed DNA methylation and transcriptome sequencing analyses to find epigenetic indicators for age-related cataracts (ARC). Anterior lens capsule membrane tissues from young and aged mice were analyzed by MethylRAD-seq to detect the genome-wide methylation of extracted DNA.

View Article and Find Full Text PDF

Purpose: This study aims to elucidate on changes in biological pathways in rabbit corneas induced by two methods of light-activated corneal stiffening: topical application of riboflavin with dextran (RF-D) or WST11 with dextran (WST-D) followed by ultraviolet A (UVA) or near-infrared (NIR) illumination, respectively.

Methods: Rabbit corneas were mechanically de-epithelialized, then left untreated (N = 3) or treated with either RF-D/UVA (N = 3) or WST-D/NIR (N = 3). After one week, quantitative proteomics was performed on untreated, RF-D/UVA- and WST-D/NIR-treated corneas.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!