Vibrational properties and the temperature-induced phase transition mechanism have been studied in [NH4][Zn(HCOO)3] and [ND4][Zn(DCOO)3] metal organic frameworks by variable-temperature dielectric, IR, and Raman measurements. DFT calculations allowed proposing the detailed assignment of vibrational modes to respective motions of atoms in the unit cell. Temperature-dependent studies reveal a very weak isotopic effect on the phase transition temperature and confirm that ordering of ammonium cations plays a major role in the mechanism of the phase transition. We also present high-pressure Raman scattering studies on [ND4][Zn(DCOO)3]. The results indicate the rigidity of the formate ions and strong compressibility of the ZnO6 octahedra. They also reveal the onset of a pressure-induced phase transition at about 1.1 GPa. This transition has strong first-order character, and it is associated with a large distortion of the metal formate framework. Our data indicate the presence of at least two nonequivalent formate ions in the high-pressure structure with very different C-D bonds. The decompression experiment shows that the transition is reversible.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ic501074x | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Tsinghua University, Tsinghua Shenzhen International Graduate School, CHINA.
The crosstalk of transition metal ions between the metal oxide cathode and Zn anode restricts the practical applications of aqueous zinc-ion batteries (ZIBs). Herein, we propose a decoupled electrolyte (DCE) consisting of a nonaqueous-phase (N-phase) anolyte and an aqueous-phase (A-phase) catholyte to prevent the crosstalk of Mn2+, thus extending the lifespan of MnO2-based ZIBs. Experimental measurements and theoretical modelling verify that trimethyl phosphate (TMP) not only synergistically works with NH4Cl in the N-phase anolyte to enable fast Zn2+ conduction while block Mn2+ diffusion toward anode, but also modifies the Zn2+ solvation structure to suppress the dendrite formation and corrosion on Zn anode.
View Article and Find Full Text PDFBMC Neurosci
January 2025
Laboratory of Veterinary Internal Medicine, Department of Clinical Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea.
Microglia/macrophages participate in the development of and recovery from experimental autoimmune encephalomyelitis (EAE), and the macrophage M1 (pro-inflammatory)/M2 (anti-inflammatory) phase transition is involved in EAE disease progression. We evaluated the efficacy of crisdesalazine (a novel microsomal prostaglandin E2 synthase-1 inhibitor) in an EAE model, including its immune-regulating potency in lipopolysaccharide-stimulated macrophages, and its neuroprotective effects in a macrophage-neuronal co-culture system. Crisdesalazine significantly alleviated clinical symptoms, inhibited inflammatory cell infiltration and demyelination in the spinal cord, and altered the phase of microglial/macrophage and regulatory T cells.
View Article and Find Full Text PDFSci Rep
January 2025
Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba, 277-8581, Japan.
Many types of spatiotemporal patterns have been observed under nonequilibrium conditions. Cycling through four or more states can provide specific dynamics, such as the spatial coexistence of multiple phases. However, transient dynamics have only been studied by previous theoretical models, since absorbing transition into a uniform phase covered by a single state occurs in the long-time limit.
View Article and Find Full Text PDFSci Rep
January 2025
School of Electronic Science and Engineering, Xiamen University, Xiamen, 361005, China.
Vanadium dioxide (VO) exhibits exceptional phase transition characteristics that enable dynamic manipulation of electromagnetic wave. In this study, a novel design of bilayer isotropic metasurface is introduced. It leverages insulating-to-metallic phase transition of VO to enable broadband holography for terahertz wave.
View Article and Find Full Text PDFNanotechnology
January 2025
MME, Wright State University, 3640 Colonel Glenn Hwy, Lake Campus, 7600 Lake Drive, Lake Campus, Fairborn, Ohio, 45435, UNITED STATES.
Surface induced crystallization/amorphization of a Germanium-antimony-tellurium (GST) nanolayer is investigated using the phase field model. A Ginzburg-Landau (GL) equation introduces an external surface layer (ESL) within which the surface energy and elastic properties are properly distributed. Next, the coupled GL and elasticity equations for the crystallization/amorphization are solved.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!