Cytogenetic analysis on geographically distant parthenogenetic populations of Tityus trivittatus Kraepelin, 1898 (Scorpiones, Buthidae): karyotype, constitutive heterochromatin and rDNA localization.

Comp Cytogenet

Laboratorio de Citogenética y Evolución - Departamento de Ecología, Genética y Evolución, IEGEBA (CONICET-UBA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires - Intendente Güiraldes 2160 - C1428EGA CABA, Argentina.

Published: August 2014

Tityus trivittatus Kraepelin, 1898 is the most medically important scorpion species of Argentina, and parthenogenetic populations are present in the major cities of this country. We performed a detailed cytogenetic analysis of specimens of three synanthropic parthenogenetic populations, all distant about 900 km from each other, using Ag-NOR, C-banding, DAPI/CMA3 staining and FISH with autologous 28S rDNA probes. The karyotype of females and embryos from the three populations showed 2n=6, with two large and four middle-sized holokinetic chromosomes. Constitutive heterochromatin was found in terminal and interstitial location and its pattern allowed the identification of three chromosome pairs. NORs were found on the terminal heterochromatic region of one pair of middle-sized chromosomes. The use of fluorochromes to characterize heterochromatin showed the absence of GC-rich heterochromatin and a low and variable number of AT-rich heterochromatic regions. We propose that a possible explanation for the lack of karyotypic variation between these geographically distant populations could be a recent colonization of urban areas by human means of synanthropic specimens from a single lineage of northeastern Argentina.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4137280PMC
http://dx.doi.org/10.3897/CompCytogen.v8i2.6461DOI Listing

Publication Analysis

Top Keywords

parthenogenetic populations
12
cytogenetic analysis
8
geographically distant
8
tityus trivittatus
8
trivittatus kraepelin
8
kraepelin 1898
8
constitutive heterochromatin
8
populations
5
analysis geographically
4
distant parthenogenetic
4

Similar Publications

Some unique asexual species persist over time and contradict the consensus that sex is a prerequisite for long-term evolutionary survival. How they escape the dead-end fate remains enigmatic. Here, we generated a haplotype-resolved genome assembly on the basis of a single individual and collected genomic data from worldwide populations of the parthenogenetic diploid oribatid mite to identify signatures of persistence without sex.

View Article and Find Full Text PDF

Facultatively parthenogenetic animals could help reveal the role of sexual conflict in the evolution of sex. Although each female can reproduce both sexually (producing sons and daughters from fertilized eggs) and asexually (typically producing only daughters from unfertilized eggs), these animals often form distinct sexual and asexual populations. We hypothesized that asexual populations are maintained through female resistance as well as the decay of male traits.

View Article and Find Full Text PDF

The Asian longhorned tick, Haemaphysalis longicornis Neumann (Ixodida: Ixodidae), is widely distributed across temperate East Asia, including Japan, and carries a variety of zoonotic diseases. The species includes bisexual and parthenogenetic lineages. Various aspects of these two lineages, such as their abundance ratio, genetic relationship, and population structure, remain unknown in island environments such as Japan that are isolated from the mainland.

View Article and Find Full Text PDF

Two invasive hemipteran adelgids cause widespread damage to North American conifers. (the hemlock woolly adelgid) has decimated and (the Eastern and Carolina hemlocks, respectively). was introduced from East Asia and reproduces parthenogenetically in North America, where it can kill trees rapidly.

View Article and Find Full Text PDF

The tiny parasitoid wasp inhabits the Mojave Desert of the southwest United States. Populations of this tiny insect variably host up to two different sex-distorting genetic elements: (1) the endosymbiotic bacterium which induces the parthenogenetic reproduction of females, and (2) a B-chromosome, "Paternal Sex Ratio" (PSR), which converts would-be female offspring to PSR-transmitting males. We report here the genome of a -infected isofemale colony KSX58.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!