Transcranial direct current stimulation and power spectral parameters: a tDCS/EEG co-registration study.

Front Hum Neurosci

Department of Electrical, Electronic and Information Engineering, University of Bologna Cesena, Italy.

Published: August 2014

Transcranial direct current stimulation (tDCS) delivers low electric currents to the brain through the scalp. Constant electric currents induce shifts in neuronal membrane excitability, resulting in secondary changes in cortical activity. Concomitant electroencephalography (EEG) monitoring during tDCS can provide valuable information on the tDCS mechanisms of action. This study examined the effects of anodal tDCS on spontaneous cortical activity in a resting brain to disclose possible modulation of spontaneous oscillatory brain activity. EEG activity was measured in ten healthy subjects during and after a session of anodal stimulation of the postero-parietal cortex to detect the tDCS-induced alterations. Changes in the theta, alpha, beta, and gamma power bands were investigated. Three main findings emerged: (1) an increase in theta band activity during the first minutes of stimulation; (2) an increase in alpha and beta power during and after stimulation; (3) a widespread activation in several brain regions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4124721PMC
http://dx.doi.org/10.3389/fnhum.2014.00601DOI Listing

Publication Analysis

Top Keywords

transcranial direct
8
direct current
8
current stimulation
8
electric currents
8
cortical activity
8
alpha beta
8
stimulation
5
activity
5
stimulation power
4
power spectral
4

Similar Publications

Background: Non-invasive neuromodulation is a promising approach for improving spasticity and motor function after stroke. However, it is still unclear which type of non-invasive neuromodulation is effective and evidence of important differences between them and botulinum toxin (BoNT) injection is limited. We aimed to assess the comparative efficacy and acceptability of non-invasive neuromodulation technologies and BoNT for post-stroke spasticity and motor function.

View Article and Find Full Text PDF

Transcutaneous electrical stimulation enhances episodic memory encoding via a noradrenaline-attention network, with associated neuroinflammatory changes.

Brain Stimul

January 2025

Lab for Clinical and Integrative Neuroscience, Trinity Institute for Neuroscience, School of Psychology, Trinity College Dublin, Ireland; Global Brain Health Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland. Electronic address:

Background: Attention plays a central role in learning and memory processes. Prior research has demonstrated how goal-directed attention influences successful performance on both attention and working memory tasks. However, an important question remains about whether long-term memory outcomes can be reliably enhanced by targeting attention processes.

View Article and Find Full Text PDF

This pilot randomized crossover study aimed to compare the effects of stimulating various transcranial direct current stimulation (tDCS) target sites to improve dual-task performance in patients with Parkinson's disease (PD). Nineteen patients with idiopathic PD completed four sessions of 2 mA anodal tDCS for 20 min at randomly assigned sites: the primary motor cortex (M1), left dorsolateral prefrontal cortex (DLPFC), ventromedial prefrontal cortex, and sham stimulation. Anodal M1 tDCS induced statistically significant improvements in single-task and cognitive dual-task timed up and go test.

View Article and Find Full Text PDF

Endogenous visuo-spatial attention is under the control of a fronto-parietal network of brain regions. One key node in this network, the intra-parietal sulcus (IPS), plays a crucial role in maintaining endogenous attention, but little is known about its ongoing physiology and network dynamics during different attentional states. Here, we investigated the reactivity of the left IPS in response to brain stimulation under different states of selective attention.

View Article and Find Full Text PDF

Potential benefits and mechanisms of physical exercise and rTMS in improving brain function in people with drug use disorders.

Gen Hosp Psychiatry

January 2025

Research Centre for Exercise Detoxification, College of Physical Education, Southwest University, Chongqing 400715, China. Electronic address:

Improving brain function impairment in people with substance use disorders (PSUD) is considered to be important in regulating their cyclic drug use impulse and relapse behavior. Physical exercise (PE) and repetitive transcranial magnetic stimulation (rTMS) may improve brain functional impairment in PSUD, respectively, but few studies have focused on the benefits and mechanisms of the combined use of the two. This editorial presents: 1) Both PE and rTMS alone appear to have positive effects on PSUD's reward system, cognitive function, and emotional regulation to varying degrees.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!