The role of the multi-resistance protein 2 (Mrp2) in the nephropathy induced by inorganic mercuric mercury (Hg(2+)) was studied in rats (TR(-)) and mice (Mrp2(-/-)), which lack functional Mrp2, and control animals. Animals were exposed to nephrotoxic doses of HgCl2. Forty-eight or 24 hours after exposure, tissues were harvested and analyzed for Hg content and markers of injury. Histological analyses revealed that the proximal tubular segments affected pathologically by Hg(2+) were significantly different between Mrp2-deficient animals and controls. In the absence of Mrp2, cellular injury localized almost exclusively in proximal tubular segments in the subcapsular (S1) to midcortical regions (early S2) of the kidney. In control animals, cellular death occurred mainly in the proximal tubular segments in the inner cortex (late S2) and outer stripe of the outer medulla (S3). These differences in renal pathology indicate that axial heterogeneity exists along the proximal tubule with respect to how mercuric ions are handled. Total renal and hepatic accumulation of mercury was also greater in animals lacking Mrp2 than in controls, indicating that Mrp2 normally plays a significant role in eliminating mercuric ions from within proximal tubular cells and hepatocytes. Analyses of plasma creatinine, BUN, and renal expression of Kim-1 and Ngal tend to support the severity of the nephropathies detected histologically. Collectively, our findings indicate that a fraction of mercuric ions is normally secreted by Mrp2 in early portions of proximal tubules into the lumen and then is absorbed downstream in straight portions, where mercuric species typically induce toxic effects.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4334813PMC
http://dx.doi.org/10.1093/toxsci/kfu171DOI Listing

Publication Analysis

Top Keywords

proximal tubular
16
tubular segments
12
mercuric ions
12
lacking mrp2
8
axial heterogeneity
8
proximal tubule
8
control animals
8
mrp2
7
proximal
7
mercuric
5

Similar Publications

Oxidative stress-associated proximal tubular cells (PTCs) damage is an important pathogenesis of hypertensive renal injury. We previously reported the protective effect of VEGFR3 in salt-sensitive hypertension. However, the specific mechanism underlying the role of VEGFR3 in kidney during the overactivation of the renin-angiotensin-aldosterone system remains unclear.

View Article and Find Full Text PDF

Background: According to statistics, the incidence of proximal gastric cancer has gradually increased in recent years, posing a serious threat to human health. Tubular gastroesophageal anastomosis and double-channel anastomosis are two relatively mature anti-reflux procedures. A comparison of these two surgical procedures, tubular gastroesophageal anastomosis and double-channel anastomosis, has rarely been reported.

View Article and Find Full Text PDF

On the substrate turnover rate of NBCe1 and AE1 SLC4 transporters: structure-function considerations.

Front Physiol

January 2025

Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.

A transport protein's turnover rate (TOR) is the maximum rate of substrate translocation under saturating conditions. This parameter represents the number of transporting events per transporter molecule (assuming a single transport site) per second (s). From this standpoint, a transporter's TOR is similar to an enzyme's catalytic constant.

View Article and Find Full Text PDF

Autosomal recessive proximal renal tubular acidosis (AR-pRTA) with ocular abnormalities is a rare syndrome caused by variants in the SLC4A4 gene, which encodes Na/HCO3 cotransporter (NBCe1). The syndrome primarily affects the kidneys, but also causes extra-renal manifestations. Pancreatic type NBCe1 is located at the basolateral membrane of the pancreatic ductal cells and together with CFTR chloride channel, it is involved in bicarbonate secretion.

View Article and Find Full Text PDF

Exacerbation of diabetes due to F. Nucleatum LPS-induced SGLT2 overexpression in the renal proximal tubular epithelial cells.

BMC Nephrol

January 2025

Department of Oral Function & Anatomy, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita- ku, Okayama, 700-0914, Japan.

Background: Diabetes treatments by the control of sodium-glucose cotransporter 2 (SGLT2) is commonly conducted while there are still uncertainties about the mechanisms for the SGLT2 overexpression in kidneys with diabetes. Previously, we have reported that glomeruli and proximal tubules with diabetic nephropathy express toll-like receptor TLR2/4, and that the TLR ligand lipopolysaccharide (LPS) of periodontal pathogens have caused nephropathy in diabetic model mice. Recently, many researchers suggested that the periodontal pathogenic bacteria Fusobacterium (F.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!